您的当前位置:首页正文

小学数学奥数题六年级练习

2020-02-25 来源:客趣旅游网
小学六年级奥数题

一.工程问题

1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?

解: 1/20+1/16=9/80表示甲乙的工作效率 ,9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量 ,35/80÷(9/80-1/10)=35表示还要35小时注满

答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?

解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天

1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天

3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。 1÷1/20=20小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。

4.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 解:120÷(4/5÷2)=300个

可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。 答案为300个

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人

栽10棵。单份给男生栽,平均每人栽几棵? 解:算式:1÷(1/6-1/10)=15棵 答案是15棵

7.一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?

解:1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。 1/2÷18=1/36 表示甲每分钟进水

最后就是1÷(1/20-1/36)=45分钟。 答案45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?

解: 由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知: 乙做3天的工作量=甲2天的工作量 即:甲乙的工作效率比是3:2

甲、乙分别做全部的的工作时间比是2:3 ,时间比的差是1份 ,实际时间的差是3天

所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期 答案为6天 方程方法: [1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1 解得x=6 9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?

解:设停电了x分钟 根据题意列方程 1-1/120*x=(1-1/60*x)*2 解得x=40 答案为40分钟。 二.鸡兔同笼问题

1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?

解: 4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么? 4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)

372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只,100-62=38表示兔的只数 三.数字数位问题

1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?

解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除

依次类推:1~1999这些数的个位上的数字之和可以被9整除

10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除

同样的道理,100~900 百位上的数字之和为4500 同样被9整除

也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;

同样的道理:1000~1999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005 从1000~1999千位上一共999个“1”的和是999,也能整除; 200020012002200320042005的各位数字之和是27,也刚好整除。 最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值... 解: (A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)

前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。

对于 B / (A+B) 取最小时,(A+B)/B 取最大, 问题转化为求 (A+B)/B 的最大值。 (A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是: 98 / 100

3.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?

解:因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,

所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。 当是102时,102/16=6.375

当是103时,103/16=6.4375 答案为6.375或6.4375

4.一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三

位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.

解:设原数个位为a,则十位为a+1,百位为16-2a

根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198 解得a=6,则a+1=7 16-2a=4 答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.

解:设该两位数为a,则该三位数为300+a 7a+24=300+a a=24 答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?

解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a=11(a+b) 因为这个和是一个平方数,可以确定a+b=11 因此这个和就是11×11=121 答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数. 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)

再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)×3=10x+2 解得x=85714 所以原数就是857142 答:原数为857142

8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.

解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9

根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。 先取d=3,b=9代入竖式的百位,可以确定十位上有进位。 根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。

再观察竖式中的十位,便可知只有当c=6,a=3时成立。 再代入竖式的千位,成立。 得到:abcd=3963

再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。 答案为3963

9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以

个位数字与十位数字之和,则商为5余数为3,求这个两位数.

解:设这个两位数为ab 10a+b=9b+6 10a+b=5(a+b)+3 化简得到一样:5a+4b=3 由于a、b均为一位整数 得到a=3或7,b=3或8 原数为33或78均可以

10.如果现在是上午的10点21分,那么在经过28799...99(一共有20个9)分钟之后的时间将是几点几分?

解: (28799……9(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20 , 答案是10:20 五.抽屉原理、奇偶性问题

1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?

解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。

把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)

答:最少要摸出9只手套,才能保证有3副同色的。

2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?

解: 每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法. 当有11人时,能保证至少有2人取得完全一样:

当有21人时,才能保证到少有3人取得完全一样. 答案为21

3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?

解:需要分情况讨论,因为无法确定其中黑球与白球的个数。

当黑球或白球其中没有大于或等于7个的,那么就是: 6*4+10+1=35(个) 如果黑球或白球其中有等于7个的,那么就是: 6*5+3+1=34(个) 如果黑球或白球其中有等于8个的,那么就是: 6*5+2+1=33 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+1=32

4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数

都相同?(如果能请说明具体操作,不能则要说明理由)

答:不可能。 因为总数为1+9+15+31=56 56/4=14 14是一个偶数 而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数(14个)。 七.路程问题

1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它?

解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。 根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20米。

可以得出马与狗的速度比是21x:20x=21:20

根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的 21份是多少路程,就是 30÷(21-20)×21=630米 2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 分析:由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)÷(10-8)×(10+8)=720千米。 答案720千米

3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 解:600÷12=50,表示哥哥、弟弟的速度差 600÷4=150,表示哥哥、弟弟的速度和

(50+150)÷2=100,表示较快的速度,方法是求和差问题中的较大数 (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数

600÷100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间

答案为两人跑一圈各要6分钟和12分钟。

4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?

分析:算式是(140+125)÷(22-17)=53秒

可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。 答案为53秒

5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 分析:300÷(5-4.4)=500秒,表示追及时间,5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的速度(得出保留整数)

算式:1360÷(1360÷340+57)≈22米/秒

关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程。也就是1360米一共用了4+57=61秒。 答案为22米/秒

7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。

解: 由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*3=5/3a米。从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时,兔子跑50米,本来相差的10米刚好追完,答案是至少跑60米才能追上

8. AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟?

解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90

走完全程甲需72分钟,乙需90分钟 故得解答案为18分钟

9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米?

解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3=360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。 因此360÷(1+1/5)=300千米 从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同

时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间有()千米

10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离?

解:(1/6-1/8)÷2=1/48表示水速的分率 2÷1/48=96千米表示总路程 11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

解: 相遇是已行了全程的七分之四表示甲乙的速度比是4:3,时间比为3:4 所以快车行全程的时间为8/4*3=6小时 ,6*33=198千米

12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米?

解: 把路程看成1,得到时间系数,去时时间系数:1/3÷12+2/3÷30,返回时间系数:3/5÷12+2/5÷30

两者之差:(3/5÷12+2/5÷30)-(1/3÷12+2/3÷30)=1/75相当于1/2小时 去时时间:1/2×(1/3÷12)÷1/75和1/2×(2/3÷30)1/75

路程:12×〔1/2×(1/3÷12)÷1/75〕+30×〔1/2×(2/3÷30)1/75〕=37.5(千米)

八.比例问题

1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分? 解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因“甲钓了三条”,相当于甲吃之前已出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。

而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元 乙还可以收回12-10=2元

刚好就是客人出的钱。

2. 甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米?

解: 原来甲.乙的速度比是5:4 , 现在的甲:5×(1-20%)=4 , 现在的乙:4×(1+20%)4.8

甲到B后,乙离A还有:5-4.8=0.2 , 总路程:10÷0.2×(4+5)=450千米 4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多

少?

解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3”,可知体积是原来的4/3。 体积÷底面积=高

现在的高是4/3÷9/16=64/27,即现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:27

5.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨? 第二题:答案为65吨

橘子+苹果=30吨 香蕉+橘子+梨=45吨 所以橘子+苹果+香蕉+橘子+梨=75吨 橘子÷(香蕉+苹果+橘子+梨)=2/13

说明:橘子是2份,香蕉+苹果+橘子+梨是13份 橘子+香蕉+苹果+橘子+梨一共是2+13=15份 过桥问题(1)

1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?

分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。 答:这列火车通过长江大桥需要17.1分钟。

2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米? 分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。 答:这列火车每秒行30米。

3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?

分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。 答:这个山洞长60米。 和倍问题

1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?

我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那

么求1倍是多少,接着再求4倍是多少?

(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁 (3)妈妈的年龄:8×4=32岁

综合:40÷(4+1)=8岁 8×4=32岁

为了保证此题的正确,验证 (1)8+32=40岁 (2)32÷8=4(倍) 计算结果符合条件,所以解题正确。

2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?

分析:已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。 甲乙飞机的速度分别每小时行800千米、400千米。

3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?

思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么? (2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?

(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩 下的课外书的几倍?

思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。 (1)兄弟俩共有课外书的数量是20+25=45。

(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。 (3)哥哥剩下的课外书的本数是45÷3=15。 (4)哥哥给弟弟课外书的本数是25-15=10。

4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

分析:根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。 甲库原存粮130吨,乙库原存粮40吨。 列方程组解应用题(一)

1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒

底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?

分析:依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。

两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数 B制出的盒身数×2=制出的盒底数

用86张白铁皮做盒身,64张白铁皮做盒底。

奇数与偶数(一)

其实,在日常生活中同学们就已经接触了很多的奇数、偶数。

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。 奇数和偶数有许多性质,常用的有:

性质1 两个偶数的和或者差仍然是偶数。 例如:8+4=12,8-4=4等。 两个奇数的和或差也是偶数。 例如:9+3=12,9-3=6等。 奇数与偶数的和或差是奇数。 例如:9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。 性质2 奇数与奇数的积是奇数。 偶数与整数的积是偶数。 性质3 任何一个奇数一定不等于任何一个偶数。

1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?

同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。 所以无论他翻动多少次,都不能使5张牌画面都向下。

2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?

不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每

拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。 奥赛专题 -- 称球问题

例1. 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。 解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

例2. 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。 解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3. 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。 奥赛专题 -- 抽屉原理

【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一

个月过生日。

【例 2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。

【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗?

2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何?

【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少有4个是同一颜色的球?

【分析与解】从最“不利”的取出情况入手。

最不利的情况是首先取出的5个球中,有3个是蓝色球、2个绿色球。

接下来,把白、黄、红三色看作三个抽屉,由于这三种颜色球相等均超过4个,所以,根据抽屉原理2,只要取出的球数多于(4-1)×3=9个,即至少应取出10个球,就可以保证取出的球至少有4个是同一抽屉(同一颜色)里的球。 故总共至少应取出10+5=15个球,才能符合要求。

思考:把题中要求改为4个不同色,或者是两两同色,情形又如何?

当我们遇到“判别具有某种事物的性质有没有,至少有几个”这样的问题时,想到它——抽屉原理,这是你的一条“决胜”之路。 奥赛专题 -- 还原问题

【例1】某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半多100元。这时他的存折上还剩1250元。他原有存款多少元?

【分析】从上面那个“重新包装”的事例中,我们应受到启发:要想还原,就得反

过来做(倒推)。由“第二次取余下的一半多100元”可知,“余下的一半少100元”是1250元,从而“余下的一半”是 1250+100=1350(元) 余下的钱(余下一半钱的2倍)是: 1350×2=2700(元)

用同样道理可算出“存款的一半”和“原有存款”。综合算式是: [(1250+100)×2+50]×2=5500(元)

还原问题的一般特点是:已知对某个数按照一定的顺序施行四则运算的结果,或把一定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。解还原问题,通常应当按照与运算或增减变化相反的顺序,进行相应的逆运算。 【例2】有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?

【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。 提示:解还原问题所作的相应的“逆运算”是指:加法用减法还原,减法用加法还原,乘法用除法还原,除法用乘法还原,并且原来是加(减)几,还原时应为减(加)几,原来是乘(除)以几,还原时应为除(乘)以几。

对于一些比较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,又便于验算。

奥赛专题 -- 鸡兔同笼问题

例1 鸡兔同笼,头共46,足共128,鸡兔各几只?

[分析] :如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:①鸡有多少只? (4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

[分析]: 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。 解:(2×100-80)÷(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80

只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

[分析1] 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。 结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1: 一班:[135-5+(7-5)]÷3=132÷3=44(人) 二班:44+5=49(人) 三班:49-7=42(人)

答:三年级一班、 二班、三班分别有44人、 49人和 42人。

[分析2] 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?

解法2:(135+ 5+ 7)÷3 = 147÷3 = 49(人) 49-5=44(人),49-7=42(人) 答:三年级一班、二班、三班分别有44人、49人和42人。

例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? [分析] 我们分步来考虑:

①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。 解:[6×10-(41+1)÷(6-4) = 18÷2=9(条) 10-9=1(条) 答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只? [分析] 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).

解:①假设蜘蛛也是6条腿,三种动物共有多少条腿? 6×18=108(条) ②有蜘蛛多少只? (118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只? 18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对) ⑤蜻蜒多少只? (20-13)÷ 2-1)= 7(只) 答:蜻蜒有7只. 牛吃草问题

1. 一个牧场,草每天匀速生长,每头牛每天吃的草量相同,17头牛30天可以将草吃完,19头牛只需要24天就可以将草吃完,现有一群牛,吃了6天后,卖掉4头牛,余下的牛再吃2天就将草吃完。问没有卖掉4头牛之前,这一群牛一共有多少头? 17×30=510(头) 19×24=456(头)(510-456)÷(30-24)=9(头)30×17-30×9=240(头)(6+2)×9=72(头)240+72+2×4=320(头)320÷(6+2)=40(头) 2. 一个蓄水池,每分钟流入4立方米水。如果打开5个水龙头,2小时半就把水池中的水放光;如果打开8个水龙头,1小时半就把池中的水放光,现打开13个水龙头,问要多少时间才能把水池中的水放光(每个水龙头每小时放走的水量相同)?

3. 甲、乙、丙3个仓库,各存放着同样数量的化肥,甲仓库用皮带输送机一台和12个工人,需要5小时才能把甲仓库搬空;乙仓库用一台皮带输送机和28个工人,需要3小时才能把乙仓库搬空;丙仓库有两台皮带输送机,如果要求2小时把丙仓库搬空,同时还需要多少工人(皮带输送机的功效相同,每个工人每小时的搬运量相同,皮带输送机与工人同时往处搬运化肥)?

1×5=5(台) 12×5=60(人)28×3=84(人)1×3=3(台)84-60=24(人)24÷(5-3)=12(人)1×5×12=60(人) 60+12×5=120(人)2×2×12=48(人)(120-48)÷2=36(人)

4. 快、中、慢3辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车的小偷,这3辆车分别用6分钟、10分钟、12分钟,追上小偷,现在知道快车的速度是每小时24千米,中车的速度是每小时20千米,问慢车的速度是多少?。 奥赛专题 -- 列车过桥问题

1、一列长300米的火车以每分1080米的速度通过一座大桥。从车头开上桥到车尾离开桥一共需3分。这座大桥长多少米?

2、某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度。

3、.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?

4、一列长300米的火车,以每分1080米的速度通过一座长为940米的在桥,从车头开上桥到车尾离开桥需要多少分钟?

5、一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟。求这列火车的速度是多少米/秒,全长是多少米?

6、铁路沿线的电杆间隔是40米,某旅客在运行的火车中,从看到第一根电线杆到看到第51根电线杆正好是2分钟,火车每小时行多少千米。

7、一个人站在铁道旁,听见行近来的火车汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360米;(轨道是笔直的)声速是每秒钟340米,求火车的速度?(得数保留整数)

一列450米长的货车,以每秒12米的速度通过一座570米长的铁桥,需要几秒钟? 8、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车。快车每秒行18米,慢车每秒行10米。如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长。

9、李明和张忆在300米的环形跑道上练习跑步,李明每秒跑5米,张忆每秒跑3米,两人同时从起跑点出发同向而行,问出发后李明第一次追上张忆时,张忆跑了多少米?

10、速度为快、中、慢的三辆汽车同时从同一地点出发,沿同一公路追赶前面一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时24千米,中速车每小时20千米,那么慢车每小时行多少千米?(选做题) 11、周长为400米的圆形跑道上,有相距100米的A、B两点,甲、乙两人分别从A、B两点同时相背而跑,两人相遇后,乙立刻转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么追上乙时,甲共跑了多少米(从出发时算起)?

奥赛专题 -- 平均数问题

1 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86 分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分? 2 果品店把2千克酥糖,3千克水果糖,5千克奶糖混合成什锦糖.已知酥糖每千克4.40元,水果糖每千克4.20元,奶糖每千克7.20元.问:什锦糖每千克多少元? 3甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?

4已知八个连续奇数的和是144,求这八个连续奇数。新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国年呢? 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 分数的四则混和运算:求1/3+1/15 +1/35+ 1/63 +1/99 +1/143

简便方法:

1/3=1×(1/3)=1/2(1-1/3) 1/15 =(1/3)×(1/5)=1/2(1/3-1/5) 1/35=(1/5)×(1/7)=1/2(1/5-1/7) 1/63 =(1/7)×(1/9)=1/2(1/7-1/9) 1/99 =(1/9)×(1/11)=1/2(1/9-1/11) 1/143=(1/11)×(1/13)=1/2(1/11-1/13)

1/3+1/15+1/35+1/63+1/99+1/143=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+1/2(1/7-1/9)+1/2(1/9-1/11)+1/2(1/11-1/13) 提公因式1/2得1/2(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+1/9-1/11+1/11-1/13)

式子中间部分都抵消,最后只剩下1/2(1-1/13)=6/13 也就是1/3+1/15 +1/35+ 1/63 +1/99 +1/143=6/13. 概念题型

2.八分之a、十分之b、十五分之c是三个最简分数,已知三个分数的积是二分之一,求这三个分数各是多少? a/8×b/10×c/15=abc/1200 因为它们的积是1/2 所以abc=600 把600分解质因数600=2×2×5×3×2×5

又因为它们的分母分别是8、10、15 而且是最简分数,它们的分子里依次不能有2、2和5、3和5

因此,只能是5×5=25,3,2×2×2=8、 所以这三个分数分别是:25/8、3/10、8/15 分类讨论题型:

3.两根同样长的绳子,第一根剪下五分之三米,第二根剪下五分之三,哪根剩下的多? 当绳子大于一米时,第一根剩下的多, 当绳子等于一米时,两根剩下的一样多, 当绳子小于一米时,第二根剩下的多. 公约公倍和同余

1.今天是星期六,再过1000天是星期几?

2.已知两个自然数a和b(a>b),已知a和b除以13的余数分别是5和9,求a+b,a-b,a×b,a2-b2各自除以13的余数。

3.2100除以一个两位数得到的余数是56,求这个两位数。

4.被除数、除数、商与余数之和是903,已知除数是35,余数是2,求被除数。 5.用一个整数去除345和543所得的余数相同,且商相差9,求这个数。

6.有一个整数,用它去除312,231,123得到的三个余数之和是41,求这个数。 第七届华杯赛试题

1.幼儿园有糖115颗、饼干148块、桔子74个,平均分给大班小朋友,结果糖多出7颗,饼干多出4块,桔子多出2个.这个大班的小朋友最多有几个人?

2.用长是9厘米、宽是6厘米、高是7厘米的长方体木块叠成一个正方体,至少需要这种长方体木块多少块.

3.已知某数与24的最大公约数为4,最小公倍数为168,求此数。 4.已知两个自然数的最大公约数为4,最小公倍数为120,求这两个数。 5.已知两个自然数的和为165,它们的最大公约数为15,求这两个数。 6.把1,2,3,4,5,6,7,8,9九个数依不同的次序排列,可以得到362880个不同的九位数,求所有这些九 位数的最大公约数.

7.两个整数的最小公倍数是1925,这两个整数分别除以他们的最大公约数,得到两个商的和是16,请写出这两个整数。

1.答:根据题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.

2.答:与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块 126×126×126÷(9×6×7)=5292(块)

3、答:此数为28。方法同例题。

4、答:这两个数为4与120,或8与60,或12与40,或20与24。方法同例题。 5答:所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。方法同例题。

6、答:因为1+2+…+9=5×9,所以无论这些九位数的值如何,它们的数字之和总可以被9整除,因而9是所有这些九位数的公约数.现任取这些九位数中的两个相差9的数,如413798256和413798265。

7、答:1925=5×5×7×11 两个商为5和11, 1925÷5=385 ; 1925÷11=175 答:根据1。题意不难看出,这个大班小朋友的人数是115-7=108,148-4=144,74-2=72的最大公约数.所以,这个大班的小朋友最多有36人.

最大公约数和最小公倍数

1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。每小时60千米的速度行驶了几小时?

2.笼中装有鸡和兔若干只,共100只脚,若将鸡换成兔,兔换成鸡,则共92只脚。笼

中原有兔、鸡各多少只?

3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀。蝉有6条腿和1对翅膀。现在这三种小虫共18只,有118条腿和20对翅膀,每种小虫各几只?

4.学雷锋活动中,同学们共做好事240件,大同学每人做好事8件,小同学每人做好事3件,他们平均每人做好事6件。参加这次活动的小同学有多少人?

5.某班42个同学参加植树,男生平均每人种3棵,女生平均每人种2棵,已知男生比女生多种56棵,男、女生各有多少人? 答案:

1.解:设每小时60千米的速度行驶了x小时。 60x+(60+15)(7-x)=465 60x+525-75x=465

525-15x=465 15x=60 x=4 答:每小时60千米的速度行驶了4小时。

2.解:兔换成鸡,每只就减少了2只脚。 (100-92)/2=4只, 兔子有4只。 (100-4*4)/2=42只

答:兔子有4只,鸡有42只。

3.解:设蜘蛛18只,蜻蜓y只,蝉z只。 三种小虫共18只,得: x+y+z=18……a式

有118条腿,得: 8x+6y+6z=118……b式 有20对翅膀,得: 2y+z=20……c式 将b式-6*a式,得: 8x+6y+6z-6(x+y+z)=118-6*18 2x=10 x=5 蜘蛛有5只, 则蜻蜓和蝉共有18-5=13只。 再将z化为(13-y)只。 再代入c式,得: 2y+13-y=20 y=7

蜻蜓有7只。 蝉有18-5-7=6只。 答:蜘蛛有5只,蜻蜓有7只,蝉有6只。 4.解:同学们共做好事240件,他们平均每人做好事6件, 说明他们共有240/6=40人 设大同学有x人,小同学有(40-x)人。 8x+3(40-x)=240 8x+120-3x=240 5x+120=240

5x=120 x=24 40-x=16 答:大同学有24人,小同学有16人。 5.解:设男生x人,女生(42-x)人。

3x-2(42-x)=56 3x+2x-84=56 5x=140 x=28 42-x=14 答:男生28人,女生14人

2.答:与上题类似,依题意,正方体的棱长应是9,6,7的最小公倍数,9,6,7的最小公倍数是126.所以,至少需要这种长方体木块 126×126×126÷(9×6×7)=5292(块)

3.答:此数为28。方法同例题。

4.答:这两个数为4与120,或8与60,或12与40,或20与24。方法同例题。 5.答:所求的两个数为15与150,或30与135,或45与120,或60与105,或75与90。

方法同例题。

6.答:因为1+2+…+9=5×9,所以无论这些九位数的值如何,它们的数字之和总可以被9整除,因而9是所有这些九位数的公约数.现任取这些九位数中的两个相差9的数,如413798256和413798265。 最大公约数和最小公倍数 一、填空

1、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有 朵花?

2、7月6日,宝珠从避暑山庄打电话向拴柱问好,贾六来看望拴柱,喜子在打扫房间。如果喜子每隔3天打扫一次,宝珠每隔6天打一次电话,贾六每隔5天看望一次,至少经过

天,问好、看望、打扫这三件事才能同时发生。

3、一筐梨,按每份两个梨分多1个,每份3个梨分多2个,每份5个梨分多4个,则筐里至少有 个梨。 二、解答题

1、 为了搞试验,将一块长为75米,宽为60米的长方形土地分为面积相等的小正方形土地,那么小正方形土地的面积最大是多少平方米?

2、 两个数的最大公约数是18,最小公倍数是180,两个数相差54,求这两个数各是多少?

3、有一种新型的电子钟,每到正点和半点都响一次铃,每过9分钟亮一次灯,如果中午12点时,它既响了铃,又亮了灯,那么下一次既响铃又亮灯要到什么时间? 回答者: 知道100℃ - 千总 四级 1-14 18:49 周期问题

1.有249朵花,按5朵红花,9朵黄花,13绿花的顺序排列着,最后一朵是什么颜色的花?

根据题意可知,者写按5红,9黄,13绿的顺序轮流排列着,即5+9+13=27(朵)花为一个周期,不断循环。因为249除以27等于9余6,也就是经过9个周期还余下6朵花,是黄花。

2.1除以7等于0.142857142857.....小数点后的第一百位是多少? 142857,有6个数在循环,就用100除以6等于16余4,是8 一、解答题

1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?

2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.

3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.

4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?

5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?

6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.

7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?

8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?

9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.

10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇? 二、解答题

11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?

12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?

13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.

14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?

———————————————答 案——————————————————————

1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头. 设从第一列车追及第二列车到两列车离开需要x秒,列方程得: 102+120+17 x =20 x x =74.

2. 设列车的速度是每秒x米,列方程得 10 x =90+2×10 x =11. 3. (1) 则快车长:18×12-10×12=96(米) (2)车尾相齐,同时同方向行进,快车 则慢车长:18×9-10×9=72(米)

4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒) (2)车身长是:13×30-310=80(米)

5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时) (2)车身长是:20×15=300(米)

6. 设火车车身长x米,车身长y米.根据题意,得 ①② 解得

7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得

①② ①-②,得: 火车离开乙后两人相遇时间为: (秒) (分).

8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)?(15+20)=8(秒).

9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度. 90÷10+2=9+2=11(米) 答:列车的速度是每秒种11米.

10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:

①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则: (i)火车开过甲身边用8秒钟,这个过程为追及问题: 故 ; (1) (i i)火车开过乙身边用7秒钟,这个过程为相遇问题: 故 . (2) 由(1)、(2)可得: , 所以, . ②火车头遇到甲处与火车遇到乙处之间的距离是: .③求火车头遇到乙时甲、乙二人之间的距离.

火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:

④求甲、乙二人过几分钟相遇? (秒) (分钟) 答:再过 分钟甲乙二人相遇. 二、解答题

11. 1034÷(20-18)=91(秒) 12. 182÷(20-18)=91(秒) 13. 288÷8-120÷60=36-2=34(米/秒) 答:列车的速度是每秒34米. 14. (600+200)÷10=80(秒) 答:从车头进入隧道到车尾离开隧道共需80秒. 第五讲 奇数与偶数及奇偶性的应用

1.能否在下式中填入适当的“+”,“-”,使等式成立? 9□8□7□6□5□4□3□2□1=28

2.在a、b、c三个数中,有一个是2003,一个是2004,一个是2005。问(a-1)(b-2)(c-3)是奇数还是偶数。 3.用代表整数的字母a、b、c、d写成等式组: a×b×c×d-a=1983 a×b×c×d-b=1993 a×b×c×d-c=2003 a×b×c×d-d=2013 试说明:符合条件的整数a、b、c、d是否存在。

4.有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?

5.任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。

十三、立体图形(1)

年级 班 姓名 得分 一、填空题

1.一个正方体的表面积是384平方分米,体积是512立方分米,这个正方体棱长的总和是 .

2.如图,在一块平坦的水泥地上,用砖和水泥砌成一个长方体的水泥池,墙厚为10厘米(底面利用原有的水泥地).这个水泥池的体积是 . 2

1.8

3 单位:米

3.一个边长为4分米的正方形,以它的一条边为轴,把正方形旋转一周后,得到一个 ,这个形体的体积是 .

4.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体,这个立方体的表面积是 平方厘米.

5.图中是一个圆柱和一个圆锥(尺寸如图).问:

V锥V柱等于 .

4

8

4

8

6.一个长方体的表面积是67.92平方分米.底面的面积是19平方分米.底面周长

是17.6分米,这个长方体的体积是 .

7.一块长方体木块长2.7米,宽1.8分米,高1.5分米.要把它裁成大小相等的正方体小木块,不许有剩余,小正方体的棱长最大是 分米.

8.王师傅将木方刨成横截面如右图(单位:厘米)那样高40厘米的一根棱柱.虚线把横截面分成大小两部分,较大的那部分的面积占整个底面的60%.这个棱柱的体积是 立方厘米.

28

8

12

24

9.小玲有两种不同形状的纸板.一种是正方形的,一种是长方形的(如下图).正方形纸板的总数与长方形纸板的总数之比是1:2.她用这些纸板做成一些竖式和横式的无盖纸盒,正好将纸板用完.在小玲所做的纸盒中,坚式纸盒的总数与横式纸盒的总数之比是 .

10.在桌面上摆有一些大小一样的正方体木块,从正南方向看如下图(1),从正东方向看如下图(2),要摆出这样的图形至多能用 块正方体木块,至少需要 块正方体木块. (图2) (图1) 二、解答题

11.一个长方形水箱,从里面量长40厘米,宽30厘米,深35厘米.原来水深10厘米,放进一个棱长20厘米的正方形铁块后,铁块的顶面仍然高于水面,这时水面高多少厘米?

12.如图表示一个正方体,它的棱长为4厘米,在它的上下、前后、左右的正中位置各挖去一个棱长为1厘米的正方体,问此图的表面积是多少?

13.下图是正方体,四边形APQC是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.

D C H C G D A B B H A B F E G Q E F P

14.雨哗哗地不停地下着,如在雨地里放一个如图1那样的长方形的容器,雨水将它下满要用1小时.有下列(A)-(E)不同的容器(图2),雨水下满各需多少时间? (注: 面是朝上的敞口部分.)

10cm

10cm 10cm 10cm 10cm

10cm 10cm 30cm 10cm 图1 10cm

10cm 20cm 10cm

30cm 20cm 10cm 10cm 10cm 20cm 20cm

10cm

10cm 10cm 2cm 20cm 10cm 10cm (E) (B) (A) (C) (D) 10cm 20cm 20cm 10cm 10cm 10cm 10cm 10cm 10cm 10cm 10cm 10cm 2cm 20cm 10cm 10cm 10cm 10cm

———————————————答 案——————————————————————

1. 96分米.

正方体的底面积为384÷6=64(平方分米).故它的棱长为512÷64=8(分米),棱长的总和为8×12=96(分米).

2. 8.96立方米.

(3-0.1×2)×(1.8-0.1×2)×2=8.96(立米米).

3. 圆柱体,200.96立方分米.

(3.14×42)×4=200.96(立方分米).

4. 216.

这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成,故表面积为4×54=216(平方厘米).

15. .

2422V111648. V锥4,V柱8168,故锥V柱243322

6. 32.3立方分米.

长方体的侧面积是67.92-19×2=29.92(平方分米),长方体的高为29.92÷17.6=1.7(分米),故长方体的体积为19×1.7=32.3(立方分米).

7. 0.3

长、宽、高分别是270厘米、18厘米和15厘米,而270、18和15的最大公约数为3(厘米),这就是小正方体棱长的最大值.

8. 17200.

设较大部分梯形高为x厘米,则较小部分高为(28- x)厘米.依题意有:

11 (1224)x:(248)(28x)6:4

22解得x =16,故这棱柱的体积为

11 (1224)16(248)(2816)4019200(立方厘米).

22

9. 3:1.

一个竖式的无盖纸盒要用一个正方形纸板和4个长方形纸板,一个横式的无盖纸盒要用2个正方形纸板和3个长方形纸板.设小玲做的纸盒中,有x个竖式的, y个横式的,则共用正方形纸板(x +2 y)个,用长方形纸板(4 x +3 y)个,依题意有: (x +2 y):(4 x +3 y)=1:3.解得x: y =3:1.

10. 20,6.

至多要20块(左下图),至少需要6块(右下图). 2 2 1 1 2

1 1 1 1 1

1 1 1 1 1 2 2 1 1 2

211. 若铁块完全浸入水中,则水面将提高203(4030)6(厘米).此时水面的高

3小于20厘米,与铁块完全浸入水中矛盾,所以铁块顶面仍然高于水面.

设放入铁块后,水深为x厘米.因水深与容器底面积的乘积应等于原有水体积与铁块浸入水中体积之和,故有:

4030x4030102020x 解得x =15,即放进铁块后,水深15厘米.

12. 大正方体的表面还剩的面积为6421290(厘米2),六个小孔的表面积为

612530(厘米2),因此所求的表面积为90+30=120(厘米2).



13. 截面的线在展开图中如右图的A-C-Q-P-A. C

C G D

Q P A B F D H D E A

B A

14. 在例图所示的容器中,容积:按水面积=(10×10×30):(10×30)=10:1,需1小时接满,所以

容器(A):容积:接水面积=(10×10×10):(10×10)=10:1,需1小时接满; 容器(B):容积:接水面积=(10×10×30):(10×10)=30:1,需3小时接满; 容器(C):容积:接水面积=(20×20×10-10×10×10):(10×10)=30:1,需3小时接满;

容器(D):容积:接水面积=(20×20×10-10×10×10):(20×10)=15:1,需1.5小时接满;

容器(E):容积:接水面积=20×S:S=20:1(S为底面积),接水时间为2小时. 图形面积(六年级奥数题及答案) 来源:本站原创 2011-03-15 16:15:18

[标签:图形面积 六年级奥数题及答案]

1、有10张扑克牌,点数分别为1,2,3,…,9,10。从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?

2、在三角形ABC中,点E是BC边上的中点,点F是中线AE上的点,其中AE=3AF,并且延长BF与AC相交于D,如下图所示。若三角形ABC的面积为48,请问三角形AFD的面积为多少?

1. 有10张扑克牌,点数分别为1,2,3,…,9,10。从中任意取出若干张牌,为了使其中必有几张牌的点数之和等于15,问最少要取多少张牌?

解答:若只取5张牌,有可能不满足条件,例如1,2,8,9,10。因此,最少取的张数不小于6。下面证明6可以满足条件。

可以将5-10分成3组:{5,10},{6,9},{7,8},每组至多选一个

则若在1,2,3,4中任意选三个数,它们的和一定在上面三组数中,即6个数必有若干个之和为15。

2. 在三角形ABC中,点E是BC边上的中点,点F是中线AE上的点,其中AE=3AF,并且延长BF与AC相交于D,如下图所示。若三角形ABC的面积为48,请问三角形AFD的面积为多少?

立体几何

从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是______平方厘米.

立体几何

从一个长为8厘米,宽为7厘米,高为6厘米的长方体中截下一个最大的正方体,剩下的几何体的表面积是______平方厘米.

六年级:立体图形的表面积与体积

难度:中难度

一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.

、 甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。

1、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。

解答:200×(1+20%)÷90%-200=16 (27.7-16)÷(30% - 20%)÷90%=130

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。

解答:设原来的利润率为x, 1+x%=(1-6.4%)×(1+x%+8%) x=17%

1、小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。如果利息率为20%,那么,到明年十月一日,小明最多可以从银行取出多少钱?

2、一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256元,这种商品的成本是多少?

1. 小明于今年十月一日在银行存了活期储蓄2500元,月利率为0.1425%。如果利息率为20%,那么,到明年十月一日,小明最多可以从银行取出多少钱?

解答:2500×0.1425%×12×(1-20%)+2500=2534.2

2. 一种商品先按20%的利润率定价,然后按定价的90%出售,结果获利256元,这种商品的成本是多少?

解答:256÷[(1+20%)×90%-1]=3200

1、甲乙两件商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的成本。

解答:200×(1+20%)÷90%-200=16

(27.7-16)÷(30% - 20%)÷90%=130

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。

解答:设原来的利润率为x,

1+x%=(1-6.4%)×(1+x%+8%)

x=17%

小升初六年级奥数题及答案 20道题(中等难度)

【题-001】抽屉原理 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度) 一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?

【题-003】奇偶性应用:(中等难度)

桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)

用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?

【题-005】填数字:(中等难度)

请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.

【题-006】灌水问题:(中等难度)

公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.

【题-007】 浓度问题:(中等难度)

瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?

【题-008】水和牛奶:(中等难度)

一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,

使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?

【题-009】 巧算:(中等难度) 计算:

【题-010】队形:(中等难度)

做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?

【题-011】计算:(中等难度) 一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?

【题-012】分数:(中等难度)

某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?

【题-013】四位数:(中等难度)

某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.

【题-014】行程:(中等难度)

王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?

【题-015】跑步:(中等难度)

狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开

始追它。问:狗再跑多远,马可以追上它?

【题-016】排队:(中等难度)

有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有( )

【题-017】分数方程:(中等难度) 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?

【题-018】自然数和:(中等难度) 在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.

【题-019】准确值:(中等难度)

【题-020】巧求整数部分题目:(中等难度)

(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是_________.

【题目答案】

【题-001解答】抽屉原理

首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的

【题-002解答】牛吃草 这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。

如果设每个人每小时的淘水量为\"1个单位\".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30. 船内原有水量与8小时漏水量之和为1×5×8=40。 每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。

船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。 如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。

从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。

【题-003解答】奇偶性应用

要使一只杯子口朝下,必须经过奇数次\"翻转\".要使9只杯子口全朝下,必须经过9个奇数之和次\"翻转\".即\"翻转\"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次\"翻转\",翻转的总次数只能是偶数次.因此无论经过多少次\"翻转\",都不能使9只杯子全部口朝下。∴被除数=21×40+16=856。 答:被除数是856,除数是21。

【题-004解答】整除问题 ∵被除数=除数×商+余数, 即被除数=除数×40+16。

由题意可知:被除数+除数=933-40-16=877, ∴(除数×40+16)+除数=877, ∴除数×41=877-16, 除数=861÷41, 除数=21, ∴被除数=21×40+16=856。 答:被除数是856,除数是21

【题-005解答】填数字:

解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.

副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5. 再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.

此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.

继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列……),

可得出结果如下图.

【题-006解答】灌水问题:

如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.

如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾.

所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.

【题-007解答】 浓度问题

【题-008解答】水和牛奶

【题-009解答】 巧算:

本题的重点在于计算括号内的算式:

.这个

算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式. 法一:

观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以

【题-010解答】 队形

当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数 169-15=154人

【题-011解答】计算答案:

用1.2.3.4.5组成不含重复数字的六位数,除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有: a1+a3+a5-a2-a4-a6=11k (*) 也就是:

,它能被11整

a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)

15=0+1+2+3+4+5=11k+2(a2+a4+a6) (**) 由此看出k只能是奇数 由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.

但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立.

对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.

根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.

【题-012解答】 分数:(中等难度)

除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分). 为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分. 如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.

【题-013解答】四位数:(中等难度) 四位数答案:

因为该数加1之后是15的倍数,也是5的倍数,所

以d=4或d=9.

因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.

这表明m=27、37、47;32、42、52.(因为38m的尾数为6) 又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k. 由于38m的个位数是6,所以5|(38m+4),

因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52. 所求的四位数是1409,1979.

【题-014解答】 行程答案:

汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4

得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).

【题-015解答】跑步:(中等难度)

根据\"马跑4步的距离狗跑7步\",可以设马每步长为7x米,则狗每步长为4x米。 根据\"狗跑5步的时间马跑3步\",可知同一时间马跑3*7x米=21x米,则狗跑5*4x=20x米。

可以得出马与狗的速度比是21x:20x=21:20

根据\"现在狗已跑出30米\",可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是 30÷(21-20)×21=630米

【题-016解答】排队:(中等难度) 根据乘法原理,分两步:

第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种。

第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种 综合两步,就有24×32=768种

【题-017解答】分数方程:(中等难度)

设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.

同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球. 类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.

现在变成:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数? 因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;

又因为42=14×3,故可将42:13+14+15,一共有3个加数; 又因为42=21×2,故可将42=9+10+11+12,一共有4个加数. 所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.

【题-018解答】自然数和:(中等难度)

(1) 请写出只有3种这样的表示方法的最小自然数. (2)请写出只有6种这样的表示方法的最小自然数.

关于某整数,它的\"奇数的约数的个数减1\",就是用连续的整数的和的形式来表达种数.

根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);

有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;

根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:

364+365;242+243+244;119+120+…+124;77+78+79+…+85;36+37+…+45;14+15+…+40

【题-019解答】准确值:(中等难度)

【题-020解答】巧求整数部分题目:(中等难度)

因篇幅问题不能全部显示,请点此查看更多更全内容