您的当前位置:首页正文

基于ABB变频器的恒压供水系统的设计

2021-08-06 来源:客趣旅游网
基于ABB变频器的恒压供水系统的设计

齐亚德·阿西·奥贝德,纳斯里苏莱曼和M.N.哈米顿

博特拉大学工程学院,电气与电子工程部

摘要

变频器恒压供水系统是一个比传统供水方式更加高效,节能的解决方案,相对传统方式能够节能50%以上。根据在特定的速度下,出水口和管道内水压与电机转速和运动频率之间的关系这一性能,可以实现变频调速恒压供水。这里介绍了恒压供水系统中使用ABB的ACS510驱动器和控制器。实际运行表明,所设计的系统,可以在误差允许的范围内,实现对设定的压力进行跟踪。假如一年工作8000小时,该系统可比阀门节流方式降低能耗54.4%。

1. 引言

无论是在生产上还是生活上,恒压供水系统被广泛使用。相比传统的水塔和高水箱的方式,新的变频恒压供水供电系统具有设备投资少,系统的稳定性强,自动化程度高的优势。该泵是一个典型的平方转矩类负载,这意味着它的扭矩和速度的平方成正比,和流动速度成正比,因此功率损耗是和速度是成正比的。当使用节流阀方式时,无论阀门开度如何,电机始终为额定转速。假设供水系统是理想态,阀门开度为80%,在这一点上,速度为n1,功率为p。在相同的情况下,当涉及到变频的方式,不仅降低电机额定转速的80%,而保持阀全开能满足供水需求。与这一点上的功率损耗P2与P1具有下列关系,

p2n20.8n10.512pnn 111 (1)

33从公式(1)可以看出,与传统供水方式相比,阀门的开度是80%,变频控制方式损耗功率只有传统方式的0.512倍。通常情况下,电动机的容量因留有一定的余量而比实际需求更大,也就是说电机不能正常工作在额定状态和速度达不到最高,即使是在用水高峰期。变频恒压供水系统节能潜力巨大。本文所设计的供水系统运行了半年多,相比传统的方式,本系统节能54.4%。目前,形成广泛的

变频恒压供水系统由PLC,单片机,其他特殊控制器加逆变器这些额外的控制器不仅增加了成本,而且还系统的故障率。在本文中,我们要设计一个恒压供水系统,并根据实际运行结果证明,舍弃专用控制器只使用逆变器还可以实现稳定的恒压供水,达到同样的节能。

2. 恒压原理

2.1、供水系统的特点

供水系统的特点如图1所示,保持阀门打开不变,电机速度改变,反映扬程H和流量Q之间的关系。保持电机转速不变,改变阀门的开度,反映扬程H和流量Q之间的关系。在扬程和流量的变化交汇点,系统同时满足两者,水消耗和水供给达到平衡,从而可以稳定运行。交叉点被称为供水系统的工作点,用水量是根据用户的需要随时间变化的。因此供水系统的任务是准确控制水流,使流量与耗水量动态平衡,以确保系统稳定运行。

图1 供水系统工作点特性,H是指供水系统的扬程,Q是系统的流量。 2.2、变频供水系统的原理

从上一节中,供水系统稳定运行压力不变可以实现对供水流量的精确控制。当阀门开度不变,改变电机的转速可以改变流量。电机转速n与频率f的关系,其中p是极对数,s为转差率。公式(2)

n (2)

60f1sp

根据改变电机的电源频率变化的速度,然后改变供水流量,这是变频供水系统的原则。

3. 变频恒压供水系统的设计

3.1、耗水量的计算和分析

居住区用水量主要包括生活,消防用水,绿化用水和其他不确定水等几部分组成。生活用水量是最重要的用水需求分析依据,因为生活用水占总用水量的比例最高。根据建筑学标准供水流量的计算方法——公式(3),作为流量最高时的水流量。

KhQd3QhmhT (3)

Qh是在一个小时内,水的最大消耗量,它的单位是立方米/小时。Qd是一天的水流量,假设住宅区有600户居民,平均每户3.5个人,人口总数为2100个人。根据城市住宅标准:在日常生活中每人不应该少于230升的供水量,在这个系统里,我们假设每人300升,照公式(3)所示, Qd是630立方米。Kh是小时变化系数,这意味着一天中最大小时用水量比例高于平均一小时的用水量,在我们的城市的Kh可以选择为2.5。 T是在一天中的水的使用时间,选择为20小时。然后可以计算出Qh值是78.75立方米/小时。居住最高的12层,根据每一层3.5米高,则扬程为48米的水泵满足要求。泵和电机的效率和系统的免税额的综合考虑,选择三个45KW泵能满足供水需求。 3.2、系统结构

变频调速恒压供水系统的原理如图2所示。系统由控制器,执行器和检测环节组成,形成一个闭环控制系统。变频器作为整个系统的控制核心,根据一个给定的压力和泵速变化频率及泵转速之间的偏差,实现精确的压力控制。变频调速恒压供水系统的主电路如图3所示。

图2.变频调速恒压供水系统示意图。它是由逆变器,水泵电机和压力表组成的闭环控制系统。

图3 恒压供水系统ACS510主电路是系统的控制核心,它的输出是直接到三台电机,根据实际压力反馈决定应该是启动电机还是启动变频电机。

根据变频器的输出第一个泵变频启动,当水压不足,变频泵改工频运行,变频启动第二个泵,如果水压压仍不足,第二台泵工频运行,变频启动第三泵。通过调整到泵的数量和调整水泵电动机速度,实现恒压供水。该系统不使用单独的控制器,但通过变频器内置PID调节功能,所以在硬件配置,根据住宅区的实际用水需求,系统由一个逆变器,三个45KW水泵电机,一个远程压力传感器,6个交流接触器,空气断路器和中间继电器和指示灯等辅助设备组成。选择ABB

公司的ACS510,ACS510-01-088A-4系列标准变频器,系统I / O接线板如图4所示。

Fig.4变频器I/O接线图。该系统分为手动运行方式和自动运行方式,当系统手动运行,AI1是电机的给定速度,AI2压力传感器反馈的实际压力值,它是变频器输出频率的重要依据。

4. 系统运行测试

4.1、出水口压力

系统已投入运行超过半年,现在仍然运行稳定,该恒压供水系统能够满足要求。图5所示为站点观察到一天不同时间出水口压力的记录曲线。从图5可知,根据实际需求,不断改变该系统的设定值,系统反馈值成功地实现了对设定压力的跟踪。为了保护电机,减少瞬间电流冲击,当电机加速和减速。变频器参数的上升和下降时间设置长为60秒。由于水流量变化的时刻和压力值波动两个原因,压力设定值和实际有一些偏差,但偏差在可接受的范围内。

图5.实时压力曲线,X轴表示一天的运行时间,Y轴表示实际的反馈和设定压力

值,他们都满足恒压供水。

4.2、节能效果

系统运行半年多,约50%的时间系统工作在80%的额定转速下,30%的时间在70%额定转速下工作,20%时间在60%额定转速下工作。假设系统全年8000工作小时,用单向阀控制消耗电力359兆瓦时,而使用频率控制系统消耗电力为164兆瓦时,节约能源54.4%。根据发出1兆瓦时电力二氧化碳排放量为0.5吨计算,变频恒压控制系统每年可减少二氧化碳排放量97吨。

5. 结论

系统投入使用,已超过六个月,仍能稳定运行。并能满足一个住宅小区的水供。通过使用变频调速控制之前和之后的功耗比较,所设计的系统节能效果明显,是一种有效和可行的恒压供水计划。这种设计节省了目前广泛使用的PLC,以及其他特殊的控制器,但需使用内置PID频率调整功能的变频器,变频器成为控制系统的控制器和驱动器,由于不使用PLC或其他特殊的控制器,使系统成本降低显着,操作更简单,更易于维护和减少系统的故障。

因篇幅问题不能全部显示,请点此查看更多更全内容