您的当前位置:首页正文

容性负载理解

2024-05-15 来源:客趣旅游网


容性负载的反射

感性负载:即和电源相比当负载电流滞后负载电压一个相位差时负载为感性(如负载为电动机;变压器;)

容性负载:即和电源相比当负载电流超前负载电压一个相位差时负载为容性(如负载为补偿电容)

阻性负载:即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯:电炉)

所有的实际接收器都有输入门电容,接收器的封装引线与返回路径间也可能存在电容,这样就相当于在传输线的末端端接了一个容性负载,如图1所示。系统的响应波形与单纯开路完全不同,因为,电容是一个与时间相关的负载,它的瞬态阻抗随时间变化而变化,时域中电容的阻抗为

式中,Vc,=VL表示电容器两端的瞬态电压,C为电容量。

图1 容性末端负载的反射

如果信号上升速度快于电容充电速度,那么在信号上升沿刚刚到达时电容两端电压将迅速上升,阻抗很小。随着电容不断充电,电容两端的电压变化率缓慢下降,电容阻抗明显增大,时间足够长后,电容充电饱和,就相当于开路。

瞬态阻抗决定反射系数,随着电容充电到饱和,反射系数也经历由-1到1的变化,这种变化带来波形的特殊变化情形,如图2和图3所示给出了当末端电容分别为0pF、2pF、5pF、10pF时,仿真得到源端电压Vinput及负载电压VL的波形。

图2 末端负载电容变化时的源端电压

图3 末端负载电容变化时的接收端电压

可见,容性负载的存在给接收端信号带来了下冲噪声及上升时间的变长。事实上,就像通过电阻向电容充电,充电过程的10%~90%的上升时间记为

其中,Zo为传输线特性阻抗。容性负载将给接收端信号的10%~90%的上升时间带来时延。例如,电容为2pF,传输线阻抗为50Ω时,时延约为0.2 ns。对于上升时间Ins的信号,无足轻重,但对于上升时间0,1 ns的信号,从图3所示中就可以看出它的影响。此外,电容越大,其影响也就越大。

除终端电容外,测试焊盘、过孔、拐角、桩线等还会在均匀传输线的中途引入容性加载阻抗,用“Hyperlynx”仿真如图4所示的电路得到的结果如图4所示。可以看出,此电容带来的危害有欠冲及振铃,尤其是欠冲,会随着电容的增大变得越来越厉害。

图4 均匀传输线的中途引入容性阻抗

不管是末端端接电容还是中途的不连续性寄生电容,都将造成欠冲及延长上升沿时间的问题,所以必须控制电路中的容性负载。首先,上述影响是由容性阻抗的负反射造成的,定义在信号上升边沿的瞬时容抗为

当信号上升沿到达此电容时,这个并联在信号路径和返回路径之间的容抗会引起负反射。为了尽量减小这种不连续的影响,并联阻抗越大越好,通常要求加载电容的容抗Zg远远大于传输线特性阻抗Zo,即

Zc>>Zo

图5 中途容性负载变化时的接收端波形

根据经验,定义

Zc>5Zo

也就是说,电路中允许并联跨接的最大电容为

可见,随着时钟频率的升高和上升沿的变短,对电路中寄生并联电容的限制越来越大,也给PCB设计和元件选择提出更高的要求。

PCB走线中途容性负载反射

很多时候,PCB走线中途会经过过孔、测试点焊盘、短的stub线等,都存在寄生电容,必然对信号造成影响。走线中途的电容对信号的影响要从发射端和接受端两个方面分

析,对起点和终点都有影响。

首先按看一下对信号发射端的影响。当一个快速上升的阶跃信号到达电容时,电容快速充电,充电电流和信号电压上升快慢有关,充电电流公式为:I=C*dV/dt。电容量越大,

充电电流越大,信号上升时间越快,dt越小,同样使充电电流越大。

我们知道,信号的反射与信号感受到的阻抗变化有关,因此为了分析,我们看一下,

电容引起的阻抗变化。在电容开始充电的初期,阻抗表示为:

这里dV实际上是阶跃信号电压变化,dt为信号上升时间,电容阻抗公式变为:

从这个公式中,我们可以得到一个很重要的信息,当阶跃信号施加到电容两端的初期,

电容的阻抗与信号上升时间和本身的电容量有关。

通常在电容充电初期,阻抗很小,小于走线的特性阻抗。信号在电容处发生负反射,这个负电压信号和原信号叠加,使得发射端的信号产生下冲,引起发射端信号的非单调性。

对于接收端,信号到达接收端后,发生正反射,反射回来的信号到达电容位置,那个

样发生负反射,反射回接收端的负反射电压同样使接收端信号产生下冲。

为了使反射噪声小于电压摆幅的5%(这种情况对信号影响可以容忍),阻抗变化必须小于10%。那么电容阻抗应该控制在多少?电容的阻抗表现为一个并联阻抗,我们可以用并联阻抗公式和反射系数公式来确定它的范围。对于这种并联阻抗,我们希望电容阻抗越大越好。假设电容阻抗是PCB走线特性阻抗的k倍,根据并联阻抗公式得到电容处信号感

受到的阻抗为:

阻抗变化率为:,即,也就是说,根据这种理想的计算,电容的阻

抗至少要是PCB特性阻抗的9倍以上。实际上,随着电容的充电,电容的阻抗不断增加,并不是一直保持最低阻抗,另外,每一个器件还会有寄生电感,使阻抗增加。因此这个9

倍限制可以放宽。在下边的讨论中假设这个限制是5倍。

有了阻抗的指标,我们就可以确定能容忍多大的电容量。电路板上50欧姆特性阻抗

很常见,我就用50欧姆来计算。

得出:

即在这种情况下,如果信号上升时间为1ns,那么电容量要小于4皮法。反之,如果电容量为4皮法,则信号上升时间最快为1ns,如果信号上升时间为0.5ns,这个4皮法

的电容就会产生问题。

这里的计算只不过是为了说明电容的影响,实际电路中情况十分复杂,需要考虑的因素更多,因此这里计算是否精确没有实际意义。关键是要通过这种计算理解电容是如何影响信号的。我们对电路板上每一个因素的影响都有一个感性认识后,就能为设计提供必要

的指导,出现问题就知道如何去分析。精确的*估需要用软件来仿真。

总结:

1 PCB走线中途容性负载使发射端信号产生下冲,接收端信号也会产生下冲。

2 能容忍的电容量和信号上升时间有关,信号上升时间越快,能容忍的电容量越小。

因篇幅问题不能全部显示,请点此查看更多更全内容