2017年河南省中考数学试卷
一、选择题(每小题3分,共30分) 1.(3分)下列各数中比1大的数是( ) A.2
B.0
C.﹣1 D.﹣3
2.(3分)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )
A.74.4×1012 B.7.44×1013 C.74.4×1013 D.7.44×1015
3.(3分)某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C.﹣2=
D.
4.(3分)解分式方程,去分母得( )
D.1﹣2x+2=3
A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3
5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) A.95分,95分
B.95分,90分
C.90分,95分
D.95分,85分
6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是( ) A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
7.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有( )
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
第1页(共28页)
8.(3分)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A.(,1) B.(2,1) C.(1,) D.(2,)
10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A.
B.2﹣ C.2﹣ D.4﹣
二、填空题(每小题3分,共15分) 11.(3分)计算:23﹣
= .
第2页(共28页)
12.(3分)不等式组的解集是 .
13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为 .
14.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是 .
15.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别
是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为 .
三、解答题(本题共8个小题,满分75分)
16.(8分)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=y=
﹣1.
+1,
17.(9分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表. 调查结果统计表 组别 A B C
分组(单位:元)
0≤x<30 30≤x<60 60≤x<90
人数 4 16 a
第3页(共28页)
D E
90≤x<120 x≥120
b 2
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有 人,a+b= ,m= ; (2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
18.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD. (1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.
19.(9分)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,
≈1.41)
第4页(共28页)
20.(9分)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 ,反比例函数的解析式为 ; (2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
21.(10分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
第5页(共28页)
22.(10分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点. (1)观察猜想
图1中,线段PM与PN的数量关系是 ,位置关系是 ; (2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
23.(11分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B. (1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
第6页(共28页)
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
第7页(共28页)
2017年河南省中考数学试卷
参考答案与试题解析
一、选择题(每小题3分,共30分)
1.(3分)(2017•河南)下列各数中比1大的数是( ) A.2
B.0
C.﹣1 D.﹣3
【分析】根据正数大于零、零大于负数,可得答案. 【解答】解:2>0>﹣1>﹣3, 故选:A.
【点评】本题考查了有理数大小比较,利用正数大于零、零大于负数是解题关键.
2.(3分)(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示( )
A.74.4×1012 B.7.44×1013 C.74.4×1013 D.7.44×1015 【解答】解:将74.4万亿用科学记数法表示为:7.44×1013. 故选:B.
3.(3分)(2017•河南)某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
【分析】左视图是从左边看到的,据此求解.
【解答】解:从左视图可以发现:该几何体共有两列,正方体的个数分别为2,1, D不符合, 故选D.
【点评】考查了由三视图判断几何体的知识,解题的关键是了解该几何体的构成,
第8页(共28页)
难度不大.
4.(3分)(2017•河南)解分式方程
﹣2=
,去分母得( )
D.1﹣2x+2=3
A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3
【分析】分式方程变形后,两边乘以最简公分母x﹣1得到结果,即可作出判断. 【解答】解:分式方程整理得:去分母得:1﹣2(x﹣1)=﹣3, 故选A
【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
5.(3分)(2017•河南)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) A.95分,95分
B.95分,90分
C.90分,95分
D.95分,85分
﹣2=﹣
,
【解答】解:位于中间位置的两数分别是95分和95分, 故中位数为95分,
数据95出现了3次,最多, 故这组数据的众数是95分, 故选A.
【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.
6.(3分)(2017•河南)一元二次方程2x2﹣5x﹣2=0的根的情况是( ) A.有两个相等的实数根
B.有两个不相等的实数根
C.只有一个实数根 D.没有实数根
【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况. 【解答】解:∵△=(﹣5)2﹣4×2×(﹣2)=41>0, ∴方程有两个不相等的实数根. 故选B.
第9页(共28页)
7.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有( )
A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2
【分析】根据平行四边形的性质.菱形的判定方法即可一一判断. 【解答】解:A、正确.对角线垂直的平行四边形的菱形. B、正确.邻边相等的平行四边形是菱形.
C、错误.对角线相等的平行四边形是矩形,不一定是菱形.
D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形. 故选C.
【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.
8.(3分)(2017•河南)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两个数字都是正数的情况数,再利用概率公式求解即可求得答案. 【解答】解:画树状图得:
第10页(共28页)
∵共有16种等可能的结果,两个数字都是正数的有4种情况, ∴两个数字都是正数的概率是:故选:C.
9.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
=.
A.(,1) B.(2,1) C.(1,) D.(2,)
【分析】由已知条件得到AD′=AD=2,AO=OD′=
=
,于是得到结论.
AB=1,根据勾股定理得到
【解答】解:∵AD′=AD=2, AO=AB=1, ∴OD′=
=
,
∵C′D′=2,C′D′∥AB, ∴C(2,故选D.
【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
第11页(共28页)
),
10.(3分)(2017•河南)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B.2﹣ C.2﹣ D.4﹣
【解答】解:连接OO′,BO′,
∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°, ∴∠OAO′=60°,
∴△OAO′是等边三角形, ∴∠AOO′=60°, ∵∠AOB=120°, ∴∠O′OB=60°,
∴△OO′B是等边三角形, ∴∠AO′B=120°, ∵∠AO′B′=120°, ∴∠B′O′B=120°, ∴∠O′B′B=∠O′BB′=30°,
∴图中阴影部分的面积=S△B′O′B﹣(S扇形O′OB﹣S△OO′B)=×1×2﹣×2×故选C.
)=2
﹣
.
﹣(
第12页(共28页)
【点评】本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.
二、填空题(每小题3分,共15分) 11.(3分)(2017•河南)计算:23﹣【分析】明确
= 6 .
表示4的算术平方根,值为2.
=8﹣2=6,
【解答】解:23﹣故答案为:6.
【点评】本题主要考查了算术平方根和有理数的乘方的定义,是一个基础题目,比较简单.
12.(3分)(2017•河南)不等式组
的解集是 ﹣1<x≤2 .
【分析】先求出不等式的解集,再求出不等式解集的公共部分. 【解答】解:
解不等式①0得:x≤2, 解不等式②得:x>﹣1, ∴不等式组的解集是﹣1<x≤2, 故答案为﹣1<x≤2.
【点评】题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
13.(3分)(2017•河南)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为 m<n .
【分析】由反比例函数y=﹣可知函数的图象在第二、第四象限内,可以知道在每个象限内,y随x的增大而增大,根据这个判定则可. 【解答】解:∵反比例函数y=﹣中k=﹣2<0,
第13页(共28页)
∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大, ∵0<1<2,
∴A、B两点均在第四象限, ∴m<n. 故答案为m<n.
【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.
14.(3分)(2017•河南)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是 12 .
【分析】根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.
【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大, 由图象可知:点P从B向C运动时,BP的最大值为5, 即BC=5,
由于M是曲线部分的最低点, ∴此时BP最小, 即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于图象的曲线部分是轴对称图形, ∴PA=3, ∴AC=6,
∴△ABC的面积为:×4×6=12 故答案为:12
第14页(共28页)
【点评】本题考查动点问题的函数图象,解题的关键是注意结合图象求出BC与AC的长度,本题属于中等题型.
15.(3分)(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=
+1,
点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为 +或
1 .
【解答】解:①如图1,
当∠B′MC=90°,B′与A重合,M是BC的中点, ∴BM=BC=
+;
②如图2,当∠MB′C=90°, ∵∠A=90°,AB=AC, ∴∠C=45°,
∴△CMB′是等腰直角三角形, ∴CM=
MB′,
∵沿MN所在的直线折叠∠B,使点B的对应点B′, ∴BM=B′M, ∴CM=BM, ∵BC=
+1,
∴CM+BM=BM+BM=
+1,
∴BM=1,
综上所述,若△MB′C为直角三角形,则BM的长为+或1,
故答案为:
+或1.
第15页(共28页)
【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.
三、解答题(本题共8个小题,满分75分)
16.(8分)(2017•河南)先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=
+1,y=
﹣1.
+1,y=
【分析】首先化简(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),然后把x=﹣1代入化简后的算式,求出算式的值是多少即可. 【解答】解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y) =4x2+4xy+y2+x2﹣y2﹣5x2+5xy =9xy 当x=
+1,y=
﹣1时,
﹣1)
原式=9(+1)(
=9×(2﹣1) =9×1 =9
17.(9分)(2017•河南)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表. 调查结果统计表 组别
分组(单位:元) 人数
第16页(共28页)
A B C D E
0≤x<30 30≤x<60 60≤x<90 90≤x<120 x≥120
4 16 a b 2
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有 50 人,a+b= 28 ,m= 8 ; (2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
【解答】解:(1)调查的总人数是16÷32%=50(人), 则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20, A组所占的百分比是a+b=8+20=28.
故答案是:50,28,8;
(2)扇形统计图中扇形C的圆心角度数是360°×
=144°;
=560(人).
=8%,则m=8.
(3)每月零花钱的数额x在60≤x<120范围的人数是1000×
【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.
18.(9分)(2017•河南)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF∥AB,与过点B的切线交于点F,连接BD. (1)求证:BD=BF;
(2)若AB=10,CD=4,求BC的长.
第17页(共28页)
【分析】(1)根据圆周角定理求出BD⊥AC,∠BDC=90°,根据切线的性质得出AB⊥BF,求出∠ACB=∠FCB,根据角平分线性质得出即可;
(2)求出AC=10,AD=6,根据勾股定理求出BD,再根据勾股定理求出BC即可. 【解答】(1)证明:∵AB是⊙O的直径, ∴∠BDA=90°,
∴BD⊥AC,∠BDC=90°, ∵BF切⊙O于B, ∴AB⊥BF, ∵CF∥AB,
∴CF⊥BF,∠FCB=∠ABC, ∵AB=AC, ∴∠ACB=∠ABC, ∴∠ACB=∠FCB, ∵BD⊥AC,BF⊥CF, ∴BD=BF;
(2)解:∵AB=10,AB=AC, ∴AC=10, ∵CD=4, ∴AD=10﹣4=6,
在Rt△ADB中,由勾股定理得:BD=在Rt△BDC中,由勾股定理得:BC=
=8, =4
.
【点评】本题考查了切线的性质,勾股定理,角平分线性质,等腰三角形的判定
第18页(共28页)
等知识点,能综合运用定理进行推理是解此题的关键.
19.(9分)(2017•河南)如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,
≈1.41)
【分析】如图作CE⊥AB于E.设AE=EC=x,则BE=x﹣5,在Rt△BCE中,根据tan53°=
,可得=
,求出x,再求出BC、AC,分别求出A、B两船到C的
时间,即可解决问题.
【解答】解:如图作CE⊥AB于E.
在Rt△ACE中,∵∠A=45°,
∴AE=EC,设AE=EC=x,则BE=x﹣5, 在Rt△BCE中, ∵tan53°=
,
第19页(共28页)
∴=,
解得x=20, ∴AE=EC=20, ∴AC=20BC=
=28.2, =25,
=0.94小时,B船到C的时间=
=1小时,
∴A船到C的时间≈
∴C船至少要等待0.94小时才能得到救援.
【点评】本题考查解直角三角形的应用﹣方向角问题、锐角三角函数、速度、时间、路程之间的关系等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.
20.(9分)(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).
(1)填空:一次函数的解析式为 y=﹣x+4 ,反比例函数的解析式为 y= ; (2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
【解答】解:(1)将B(3,1)代入y=, ∴k=3,
将A(m,3)代入y=, ∴m=1, ∴A(1,3),
将A(1,3)代入代入y=﹣x+b,
第20页(共28页)
∴b=4, ∴y=﹣x+4
(2)设P(x,y), 由(1)可知:1≤x≤3, ∴PD=y=﹣x+4,OD=x, ∴S=x(﹣x+4),
∴由二次函数的图象可知: S的取值范围为:≤S≤2 故答案为:(1)y=﹣x+4;y=.
【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出一次函数与反比例函数的解析式,本题属于中等题型.
21.(10分)(2017•河南)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同. (1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.
【解答】(按买3个A种魔方和买4个B种魔方钱数相同解答) 解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,
第21页(共28页)
根据题意得:解得:
.
,
答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,
根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600; w活动二=20m+15(100﹣m﹣m)=﹣10m+1500. 当w活动一<w活动二时,有10m+600<﹣10m+1500, 解得:m<45;
当w活动一=w活动二时,有10m+600=﹣10m+1500, 解得:m=45;
当w活动一>w活动二时,有10m+600>﹣10m+1500, 解得:45<m≤50.
综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠. (按购买3个A种魔方和4个B种魔方需要130元解答)
解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个, 根据题意得:解得:
.
,
答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.
(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,
根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520; w活动二=26m+13(100﹣m﹣m)=1300. 当w活动一<w活动二时,有15.6m+520<1300, 解得:m<50;
当w活动一=w活动二时,有15.6m+520=1300, 解得:m=50;
第22页(共28页)
当w活动一>w活动二时,有15.6m+520>1300, 不等式无解.
综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.
【点评】本题考查了二元一次方程组的应用、一次函数的应用、解一元一次不等式以及解一元一次方程,解题的关键是:(1)找准等量关系,列出关于x、y的二元一次方程组;(2)根据两种活动方案找出w活动一、w活动二关于m的函数关系式.
22.(10分)(2017•河南)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.
(1)观察猜想
图1中,线段PM与PN的数量关系是 PM=PN ,位置关系是 PM⊥PN ; (2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由; (3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.
【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;
第23页(共28页)
(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;
(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论. 【解答】解:(1)∵点P,N是BC,CD的中点, ∴PN∥BD,PN=BD,
∵点P,M是CD,DE的中点, ∴PM∥CE,PM=CE, ∵AB=AC,AD=AE, ∴BD=CE, ∴PM=PN, ∵PN∥BD, ∴∠DPN=∠ADC, ∵PM∥CE, ∴∠DPM=∠DCA, ∵∠BAC=90°, ∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°, ∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(2)由旋转知,∠BAD=∠CAE, ∵AB=AC,AD=AE, ∴△ABD≌△ACE(SAS), ∴∠ABD=∠ACE,BD=CE,
同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE, ∴PM=PN,
∴△PMN是等腰三角形,
第24页(共28页)
同(1)的方法得,PM∥CE, ∴∠DPM=∠DCE,
同(1)的方法得,PN∥BD, ∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC, ∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC =∠ACB+∠ABD+∠DBC=∠ACB+∠ABC, ∵∠BAC=90°, ∴∠ACB+∠ABC=90°, ∴∠MPN=90°,
∴△PMN是等腰直角三角形,
(3)如图2,同(2)的方法得,△PMN是等腰直角三角形, ∴MN最大时,△PMN的面积最大, ∴DE∥BC且DE在顶点A上面, ∴MN最大=AM+AN, 连接AM,AN,
在△ADE中,AD=AE=4,∠DAE=90°, ∴AM=2
,
,
在Rt△ABC中,AB=AC=10,AN=5∴MN最大=2
+5
=7
,
∴S△PMN最大=PM2=×MN2=×(7)2=.
【点评】此题是几何变换综合题,主要考查了三角形的中位线定理,等腰直角三
第25页(共28页)
角形的判定和性质,全等三角形的判断和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大,是一道中考常考题.
23.(11分)(2017•河南)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B. (1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
【分析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;
②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的
第26页(共28页)
值.
【解答】解:
(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B, ∴0=﹣2+c,解得c=2, ∴B(0,2),
∵抛物线y=﹣x2+bx+c经过点A,B, ∴
,解得
, x+2;
∴抛物线解析式为y=﹣x2+
(2)①由(1)可知直线解析式为y=﹣x+2,
∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,
∴P(m,﹣m+2),N(m,﹣m2+
m+2),
m+2﹣(﹣m+2)=﹣m2+4m,
∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+
∵△BPN和△APM相似,且∠BPN=∠APM, ∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°, 当∠BNP=90°时,则有BN⊥MN, ∴BN=OM=m,
∴=,即=,解得m=0(舍去)或m=2.5,
∴M(2.5,0); 当∠NBP=90°时,则有
=
,
∵A(3,0),B(0,2),P(m,﹣m+2), ∴BP=
=
m,AP=
=
(3﹣m),
第27页(共28页)
∴=,解得m=0(舍去)或m=,
∴M(,0);
综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(
,0);
m+2),
②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+∵M,P,N三点为“共谐点”,
∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点, 当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+点重合,舍去)或m=;
当M为线段PN的中点时,则有﹣m+2+(﹣m2+去)或m=﹣1;
当N为线段PM的中点时,则有﹣m+2=2(﹣m2+或m=﹣;
综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.
【点评】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.
m+2),解得m=3(舍去)m+2)=0,解得m=3(舍
m+2,解得m=3(三
第28页(共28页)
因篇幅问题不能全部显示,请点此查看更多更全内容