典型例题一
欧阳家百(2021.03.07)
例
321 解不等式:(1)2xx15x0;(2)
(x4)(x5)2(2x)30.
分析:如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)0(或f(x)0)可用“穿根法”求解,但要注意处理好有重根的情况.
解:(1)原不等式可化为 把方程x(2x5)(x3)0的三个根
5x10,x2,x332顺次标上数
轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.
5xx0或x3 ∴原不等式解集为2(2)原不等式等价于
∴原不等式解集为xx5或5x4或x2
说明:用“穿根法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.
典型例题二
例2 解下列分式不等式:
x24x132112x2; (2)3x7x2(1)x2
欧阳家百创编
欧阳家百创编
分析:当分式不等式化为形
①②
f(x)0f(x)g(x)0g(x)
f(x)0(或0)g(x)时,要注意它的等价变
f(x)g(x)0f(x)f(x)0或0f(x)0或f(x)g(x)0g(x)0g(x)g(x)
(1)解:原不等式等价于 用“穿根法”
∴原不等式解集为(,2)1,26,。
2x23x1023x7x2(2)解法一:原不等式等价于
11(,)(,1)(2,)32∴原不等式解集为。 (2x1)(x1)0解法二:原不等式等价于(3x1)(x2)
用“穿根法”
11(,)(,1)(2,)32∴原不等式解集为
典型例题三
例3 解不等式
x24x2
分析:解此题的关键是去绝对值符号,而去绝对值符号有两种
a(a0)aa(a0) 方法:一是根据绝对值的意义
二是根据绝对值的性质:xaaxa,x.axa或xa,因此本题有如下两种解法.
欧阳家百创编
欧阳家百创编
22x40x402或x4x24x2x2解法一:原不等式
即
x2或x22x2或2xxx2或x1
∴2x3或1x2
故原不等式的解集为x1x3.
2(x2)x4x2 解法二:原不等式等价于
22x3x4x2故1x32x1或x2x4(x2)即∴.
典型例题四
例
x26x502124xx4 解不等式.
分析:这是一个分式不等式,其左边是两个关于x二次式的商,由商的符号法则,它等价于下列两个不等式组:
2x6x502124xx02x6x50124xx20或
所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.
解法一:原不等式等价下面两个不等式级的并集:
22,x6x50 x6x50,2124xx0124xx20或
(x1)(x5)0,(x1)(x5)0,(x2)(x6)0;或(x2)(x6)0; x1,或x5,1x5,;2x6或x2,或x6
1x5,或x2或x6.
∴原不等式解集是{xx2,或1x5,或x6}.
欧阳家百创编
欧阳家百创编
(x1)(x5)0(x2)(x6)解法二:原不等式化为.
画数轴,找因式根,分区间,定符号.
(x1)(x5)(x2)(x6)符号
∴原不等式解集是{xx2,或1x5,或x6}.
说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.
典型例题五
例
x22x2x25 解不等式32xx.
分析:不等式左右两边都是含有x的代数式,必须先把它们移到一边,使另一边为0再解.
解:移项整理,将原不等式化为
(x2)(x2x1)0(x3)(x1).
(x2)02(x3)(x1)由xx10恒成立,知原不等式等价于.
解之,得原不等式的解集为{x1x2或x3}. 说明:此题易出现去分母得
x22x2x(32xx2)的错误解
法.避免误解的方法是移项使一边为0再解.
另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
欧阳家百创编
欧阳家百创编
典型例题六
例6 设mR,解关于x的不等式m分析:进行分类讨论求解.
解:当m0时,因30一定成立,故原不等式的解集为R. 当m0时,原不等式化为(mx3)(mx1)0; 当m0时,解得
31xmm;
22x2mx30.
13xm. 当m0时,解得m31xxmm∴当m0时,原不等式的解集为; 13xxmmm0当时,原不等式的解集为.
说明:解不等式时,由于mR,因此不能完全按一元二次不等式的解法求解.因为当m0时,原不等式化为30,此时不等式的解集为R,所以解题时应分m0与m0两种情况来讨论. 在解出m22x2mx30的两根为
x13m,
x21m后,认为
31mm,这
也是易出现的错误之处.这时也应分情况来讨论:当m0时,
3131mm;当m0时,mm.
典型例题七
例
22axa1x(a0). x7 解关于的不等式
分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.
欧阳家百创编
欧阳家百创编
2axa20,(1)1x0,2xa20,(2)222axa(1x);解:原不等式或1x0.
ax,2(1)x1,ax,22(2)2x2(a1)xa10;x1. 由a0,得:
22224(a1)4(a1)8a0x2(a1)xa10由判别式,故不等式
的解是a12axa12a.
当0a2时,
aa12a12,a12a1,不等式组(1)的解是
a12ax1,不等式组(2)的解是x1.
当a2时,不等式组(1)无解,(2)的解是
xa2.
2a,综上可知,当0a2时,原不等式的解集是a1a,. a2时,原不等式的解集是2;当
说明:本题分类讨论标准“0a2,a2”是依据“已知a0及(1)中‘
xaax2,x1’,(2)中‘2,x1’”确定的.解含有参
数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.
22axa(1x).纠正错误的办法本题易误把原不等式等价于不等式
是熟练掌握无理不等式基本类型的解法.
典型例题八
例8 解不等式
4x210x33.
欧阳家百创编
欧阳家百创编
分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可.
解答:去掉绝对值号得34x∴原不等式等价于不等式组
15xx0或x322. ∴原不等式的解集为210x33,
说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等价转化为不等式组,变成求不等式组的解.
典型例题九
例9 解关于x的不等式x2(aa2)xa30.
分析:不等式中含有字母a,故需分类讨论.但解题思路与一
223x(aa)xa0般的一元二次不等式的解法完全一样:求出方程
的根,然后写出不等式的解,但由于方程的根含有字母a,故需比较两根的大小,从而引出讨论.
2(xa)(xa)0. 解:原不等式可化为
(1)当aa(即a1或a0)时,不等式的解集为:
2x2xa或xa2; ;
.
(2)当aa(即0a1)时,不等式的解集为:
x2xa2或xa(3)当aa(即a0或1)时,不等式的解集为:
xxR且xa说明:对参数进行的讨论,是根据解题的需要而自然引出的,
欧阳家百创编
欧阳家百创编
并非一开始就对参数加以分类、讨论.比如本题,为求不等式的
2xaxa21解,需先求出方程的根,,因此不等式的解就是x小于
小根或x大于大根.但a与a两根的大小不能确定,因此需要讨论
aa2,aa2,aa2三种情况.
2典型例题十
2例10 已知不等式axbxc0的解集是xx(0).求2不等式cxbxa0的解集.
分析:按照一元二次不等式的一般解法,先确定系数c的正负,然后求出方程cx2bxa0的两根即可解之.
2解:(解法1)由题可判断出,是方程ax∴
babxc0的两根,
,
ca.
又ax2bxc0的解集是xx,说明a0.
而0,00c0c0a,
bacx2bxa0x2x0cc∴.
1111bax2()x()()0x2x0cc∴,即,
(x11)(x)0.
即
11
0, 又,∴
1111xx(x)(x)0. ∴的解集为(解法2)由题意可判断出,是方程ax2bxc0的两根,
欧阳家百创编
欧阳家百创编
∴
ca.
又ax2bxc0的解集是xx,说明a0.
而0,0对方程cx20c0c0a.
bxa0两边同除以x2得
11a()2b()c0xx. t1x令,该方程即为
at2btc0,它的两根为t1,t2,
∴
111x1x1,x2.∴
,
x21,
12∴方程cxbxa0的两根为11
0. ∵,∴
1,.
11xx2cxbxa0. ∴不等式的解集是说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有,
是已知量,故所求不等式解集也用,表示,不等式系数a
,
b,c的关系也用,表示出来;(3)注意解法
2中用“变换”的方
法求方程的根.
典型例题十二
例
xaxb1(,)(1,)22xx1xx1312 若不等式的解为,求a、b欧阳家百创编
欧阳家百创编
的值.
分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a、b式子.
13x2x1(x)2024解:∵, 13x2x1(x)2024,
∴原不等式化为(2ab)x2ab01ab2ab34ab依题意2ab3,
2(ab)xab0.
5a2b32. ∴ 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.
典型例题十三
例13 不等式ax2bx20的解集为x1x2,求a与b的值.
分析:此题为一元二次不等式逆向思维题,要使解集为
x1x2,不等式
ax2bx20需满足条件
a0,
0,
ax2bx20的两根为x11,x22.
解法一:设axbxx12axx212a2bx20的两根为x1,x2,由韦达定理得:
b12a212a由题意:
欧阳家百创编
欧阳家百创编
∴a1,b1,此时满足a0,b解法二:构造解集为x1x224a(2)0.
的一元二次不等式:
(x1)(x2)0,即x2x20,此不等式与原不等式ax2bx20应
为同解不等式,故需满足:
ab2112∴a1,b1.
说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.
典型例题十四
例14 解关于x的不等式ax2(a1)x10.
分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想.
解:分以下情况讨论
(1)当a0时,原不等式变为:x10,∴x1 (2)当a0时,原不等式变为:(ax1)(x1)0①
1(x)(x1)0a①当a0时,①式变为x1a.
1(x)(x1)0a②当a0时,①式变为. 11a1aa,∴不等式的解为x1或
②
.当
∵,∴当0a1时,
1111xaa,此时②的解为
111x1a1时,aa,此时②的解为.
欧阳家百创编
欧阳家百创编
说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:
分类应做到使所给参数a的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论a0时,解一元二次不
2ax等式(a1)x10应首选做到将二次项系数变为正数再求解.
典型例题十五
例15 解不等式
x23x108x.
分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,
f(x)g(x)f(x)g(x)可转化为
f(x)g(x)或
,而
f(x)g(x)等价于:
f(x)0g(x)0f(x)[g(x)]2f(x)0g(x)0或
.
解:原不等式等价于下面两个不等式组:
8x02①x3x100②
8x02x3x10022x3x10(8x)
x8由①得x5或x2,∴x8
x8x5或x27474xx813.13由②得∴,
7474xx8或x8xx1313. 所以原不等式的解集为,即为
说明:本题也可以转化为
f(x)g(x)型的不等式求解,注意:
欧阳家百创编
欧阳家百创编
f(x)0f(x)g(x)g(x)02f(x)[g(x)],
,
这里,设全集
2Axx3x108x,
U{xx23x100}{xx2或x5}则所求不等式的解集为A的补集A,
由
8x0x23x108xx23x100x222x3x10(8x)或
5x7413.
74Axx2或5x13,∴原不等式的解集是即74Axx13.
欧阳家百创编
因篇幅问题不能全部显示,请点此查看更多更全内容