您的当前位置:首页正文

专题:比较二次根式大小精编版

2022-11-30 来源:客趣旅游网
……………………………………………………………最新资料推荐…………………………………………………

专题:比较二次根式大小

二次根式是初中数学中的基础知识,也是初中数学学习中的重点内容;而比较二次根式的大小又是二次根式知识中的难点,也是中考和数学竞赛中常见的题型,经常会考到不查表、不求二次根式的值,来比较几个不含分母的二次根式的大小的问题。尽管教材上介绍了比较二次根式大小的几种基本方法,如求近似值法、比较被开方数法等,尽管很多教辅材料中也总结了不少诸如“作差”、“做商”、“有理化”、“取倒数”、“平方”等方法,但许多学生在考试中仍显得力不从心,并不清楚到底什么时候用哪种方法最合适?解答这类题目时缺少方法与对策,以至于无从下手。下面就举例介绍几种比较二次根式大小的有效方法。

一、移动因式法

将根号外的正因式移入根号内,从而转化为比较被开方数的大小。

例1:比较解:

的大小。

二、运用平方法

两边同时平方,转化为比较幂的大小。此法的依据是:两个正数的平方是正数,平方大的数就大;两个负数的平方也是正数,平方大的数反而小。

例2:比较解:∵

>0,

与,>0

的大小。

三、分母有理化法

此法是先将各自的分母有理化,再进行比较。

例3:比较与的大小。

解:

1

……………………………………………………………最新资料推荐…………………………………………………

∴>

四、分子有理化法

此法是先将各自的分子有理化,再比较大小。

例4:比较与的大小

解:∵

∴>

五、求差或求商法 求差法的基本思路是:设<0时,<;当小。

求商法的基本思路是:设

为任意两个实数,先求出与的商,再根据“①为任意两个实数,先求出与的差,再根据“当时,

;当

>0时,>”来比较与的大

同号:当>1时,>;=1时,;<1时,<。②异号:正数大

于负数” 来比较与的大小。

例5:比较的大小。

解:∵

2

……………………………………………………………最新资料推荐…………………………………………………

例6:比较

<的大小。

解:∵

>1

六、求倒数法

先求两数的倒数,而后再进行比较。 例7:比较

的大小。

解:∵

七、运用媒介法

此法是借助中间量(定量或变量)巧妙转换达到直观比较的方法,类似于解方程中的换元法。 例8:已知的大小。 解:设则∵

,∴,

,即

,试比较

八、设特定值法

如果要比较的二次根式中含有字母,为了快速比较,解答时可在许可的条件下设定特殊值来进行比较。

例9:比较

3

的大小。

……………………………………………………………最新资料推荐…………………………………………………

解:设,则: =1,

=>

∵<1,∴

九、局部缩放法

如果要比较的二次根式一眼看不出有什么特点,又不准求近似值,可采取局部缩放法,以确定它们的取值范围,从而达到比较大小的目的。 例10:比较解:设

,,7<,8<

∴<,即

的大小。

<8,即7<<8 <9,即8<<9

例11:比较与的大小。

解:∵>

十、“结论”推理法

通过二次根式的不断学习,不难得出这样的结论:“>

>(

>0)”,利用此结论也可以比较一些二次根式的大小(结论证明见文末)。

的大小。 ,

>>

(>

>0)可知:

例12:比较1与解:∵由

4

……………………………………………………………最新资料推荐…………………………………………………

即又∵∴

>>>

,即1>

总的来说,比较二次根式大小的方法不仅仅局限于以上十种,除此之外诸如移项、拆项法,类比推理法,数形结合法,数轴法,还有假设推理法等等,但不管使用哪种方法,都必须在掌握二次根式的基本性质和运算法则上进行,要根据问题的特征,二次根式的结构特点,多角度地探索思考,做到具体问题具体分析,针对不同问题采取不同的策略,另外还应多做这方面的训练,方能达到熟练而又快捷,运用自如的程度。

附:“

【典题新练】: 1、比较 2、比较 3、比较

的大小;

的大小;

的大小; >

(>

>0)”。

4、比较

与的大小;

5、比较 6、比较 7、设

与的大小;

与的大小(其中为正整数);

,,试比较它们的大小;

5

……………………………………………………………最新资料推荐…………………………………………………

8、比较 9、比较 10、 比较 11、比较 12、比较

与的大小;

与的大小;

与的大小;

与的大小;

的大小;

13、比较 14、 比较

15、若为正整数,试比较 16、比较 17、比较

与与

与的大小;

的大小;

的大小;

的大小;

的大小。

6

因篇幅问题不能全部显示,请点此查看更多更全内容