ContentslistsavailableatScienceDirect
EcologicalIndicators
journalhomepage:www.elsevier.com/locate/ecolind
DevelopmentofanecologicalsecurityevaluationmethodbasedontheecologicalfootprintandapplicationtoatypicalstepperegioninChina
XiaobingLi∗,MeirongTian,HongWang,HanWang,JingjingYu
StateKeyLaboratoryofEarthSurfaceProcessesandResourceEcology,CollegeofResourcesScienceandTechnology,BeijingNormalUniversity,Beijing100875,China
article
info
abstract
Articlehistory:
Received20June2013
Receivedinrevisedform5December2013Accepted15December2013
Keywords:
EcologicalfootprintTypicalsteppe
EcologicalsecurityEvaluationmethod
Sustainabledevelopment
ThesteppesofInnerMongolialieinaregionwhicharesensitivetoglobalclimatechange.TheregionformsanimportantecologicalbarrieragainstsandstormsanditisalsostrategicallyimportantforthedevelopmentofChina’senergyandmineralresources.TodescribetheinfluenceofresourcesexploitationontheecologicalsecurityofthetypicalInnerMongoliansteppe,wedevelopedaconsumptionfootprintpressureindex(CFPI)andaproductionfootprintpressureindex(PFPI)basedontheecologicalfootprintconcept,anddevelopedanecologicalfootprintcontributionindex(EFCI)toassessthepressurescreatedbytransferringresourcesandproductsfromoutputareastoinputareas.Usingtheseindices,wedevel-opedacoupledecologicalsecurityassessmentmodeltoevaluatetheecologicalsecuritylevelofthetypicalsteppe.WeusedthemodeltocalculateCFPI,PFPI,andEFCIforthesteppeareaforthreecountiesandoneurbanregionofInnerMongoliafrom2001to2010.WefoundthatCFPIandPFPIincreasedthroughoutthestudyperiodinmostregions.Inaddition,EFCIwasgenerallypositive,whichindicatedtheecologicalsecurityofthetypicalsteppewasaffectedprimarilybytheelectricityandproductionoutputprocesses.Ourresultssuggestthattheecologicalsecurityofthestudyareahasbeenatseriousrisksince2005.
© 2013 Elsevier Ltd. All rights reserved.
1.Introduction
InChina,populationgrowthandsocioeconomicdevelopmenthavebeenaccompaniedbydepletionofenergyresourcesduetoexcessiveconsumption(Daietal.,2010).Thishasgraduallyledtoseriousecologicaldegradationandenvironmentaldam-age,whichhavechallengedindividuals,communities,andregions.Meanwhile,findingwaystoguaranteethehealthandsustain-abledevelopmentofregionalecosystemsdespiteofrisingenergyandresourcedemandhasbecomethefocusofresearcharoundtheworld(HodsonandMarvin,2009),ecologicalsecuritycon-ceptappearedinduecourse.Ecologicalsecuritywasconsideredasstrategicallyimportantasnationaldefense,economicsecurity,andfinancialsecurity(AndersenandLorch,1998;Duffyetal.,2001;Kullenberg,2002;BonheurandLane,2002).Maintainingglobalandregionalecologicalsecurity,andtherebypermittingsustain-ablesocioeconomicdevelopment,hasbecometheconsensusgoaloftheinternationalcommunity.
Ecologicalsecurityevaluationiscomprehensive,andthemainmethodsthathavebeenusedincludethepressure-state-response
∗Correspondingauthor.Tel.:+861058807212;fax:+861058807212.E-mailaddress:tianmeirong007@163.com(X.Li).
model(Tong,2000),thesystemclusteringmethod(Lundquist,2002),theecologicalfootprintmethod(Wackernagel,1998;LenzenandMurray,2001;Huangetal.,2007;LiandHe,2011;Bartel,2000),thecomprehensiveindexmethod(Bartel,2000),thefuzzycomprehensiveevaluationmethod(Onkal-Enginetal.,2004),andtheneuralnetworkmodels(Chen,2004).Amongthequantitativemethodsforecologicalsecurityassessment,theecologicalfootprintmethodissimpleandclearintermsofconceptandprinciples.Ithasthereforebeenappliedinlong-termstudiesofecologicalriskandinregionalcomparisons(Stoglehner,2003;Collinsetal.,2006;Senbeletal.,2003;Wackernageletal.,2004,2006).Alsothisapproachcanbecomeaneasy-to-readmeasurementtoolforecologicalsustaina-bility(Wackernageletal.,1999),whichcanalsobeusedtojudgewhetheracountry’soraregion’sdevelopmentremainswithinthebiocapacitybycomparingtheconsumptionandproductionofresourcesintheregion,therebyrevealstheregionalecologi-calsecuritystatusandthepotentialforsustainabledevelopment(Chenetal.,2010;Liuetal.,2011).
China’sInnerMongoliaAutonomousregioncoversabout12.5%ofthecountry’stotallandarea.Itisfamousforitslushgrasslandsandrichmineralresources,andhasbecomemainoutputareaofcoalresourcesinChina.GiventheimportanceofcoalasanenergysourceinChina,theregionthereforeprovidesanimportantcon-tributiontothecountry’ssocioeconomicdevelopment.However,
1470-160X/$–seefrontmatter© 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.ecolind.2013.12.014
154X.Lietal./EcologicalIndicators39 (2014) 153–159
Fig.1.Locationofthestudyarea.
thisregionalsoplaysavitalroleasanecologicalbarrierinnorth-ernChina.ThetypicalsteppesofInnerMongolialiewithintheNortheastChinaTransectundertheInternationalGeosphereBio-sphereProgram(IGBP)whichisasensitiveareaoftheglobalchange(Zhangetal.,1997).However,continuoussocioeconomicdevelop-mentwithexcessiveexploitationofresourcescouldinducesoilandwaterlossandgrasslanddegradation(ZhuandQin,2008;Qingetal.,2013),whichthreatenedtheecologicalsecurityofthesteppes.
Inthispaper,wewillintroducethestudyareaanddescribeourdatasources;provideanoverviewoftheecologicalfootprintmethodandtheconceptofbiocapacity,andproposethreeindices,theproductionfootprintpressureindex(PFPI),theconsumptionfootprintpressureindex(CFPI)andecologicalfootprintcontribu-tionindex(EFCI),whichweusetodevelopacoupledecologicalsecurityassessmentmodelandevaluatetheecologicalsecurityoffourtypicalsteppeareasaswellasanalyzeanddiscusstheimplica-tionsofourresults.Thegeneralobjectiveofthestudyistomeasurethepressureimposedbytheoutsideregionstothestudyarea,therebyprovidingabasisfordevelopingaplanformoresustainableregionaldevelopment.
2.Studyarea
ThetypicalsteppesinthestudywerelocateintheeasternpartofInnerMongolia,coveringanareaof1.1×105km2(Fig.1).Ourstudyareacomprisesthreecountiesandoneurbanregion:AbagCounty,EastUjimqinCounty,WestUjimqinCountyandXilinhotCity.Thestudyareahasacontinentalaridtosemiaridclimate,withannualaveragetemperaturesof−1to4◦C,anannualmeanprecipitationof150–450mm,andanannualevaporationof1600–2400mm,whichincreasesfromeasttowest.Theelevationdecreasesgraduallyfrom1800minthesoutheastto800minthenorthwest.ThevegetationisdominatedbyxeromorphicgrassessuchasStipagrandisP.Smirn,StipakryloviiRoshev,LeymuschinensisTzvel,CleistogenessquarrosaKengetal.
Thepopulationinthestudyareahadgrowngradually,increas-ingfrom3.0×105in2001to3.5×105in2010.Withtherapidsocioeconomicdevelopment,percapitaGDPincreasedtoninetimesofitsoriginallevel,from1×104RMBin2001to9×104RMBin2010.Simultaneously,energyconsumptionhadincreasedrapidlyfrom0.34Mtsce(standardcoalequivalent)in2001to2.8486Mtscein2010.Duringthisperiod,theelectricitysupplyincreasedfrom429.36GW-hto495.88GW-h.
3.Methods
3.1.Evaluationmodelofecologicalfootprintandbiocapacity
Ecologicalfootprintisakindofsimplemethodologybutcom-prehensivewayforaccountingthefundamentalconditionsforsustainability.Itisaresourceandemissionsaccountingtoolmeasuringdirectandindirecthumandemandfortheplanet’sregenerativecapacity(biocapacity)andcomparingitwiththebiocapacityavailableontheplanet(Wackernageletal.,1999;Monfredaetal.,2004;Gallietal.,2012a,b),therearesixland-usetypesformeasuringtheecologicalfootprint:cropland,forestland,grazingland,fishinggrounds,built-upland,andcarbonuptakeland(fortheabsorptionofanthropogeniccarbondioxideemissions)(Gallietal.,2012a,b;Boruckeetal.,2013)Theecologicalfootprint(EF)canbeexpressedintheunitofglobalhectares-gha(Monfredaetal.,2004;Bastianonietal.,2012;Gallietal.,2012a,b)throughamulti-stepprocess,asfollows:
EFQQY=
Yn×Y×r=Yn×nY×r=Q×rwYw
(1)
whereQistheamountofaproductharvestedorCO2emitted,YnisthenationalaverageyieldfortheproductQ(oritscarbonuptakecapacityincaseswhereQiscarbondioxide),andYandraretheyieldandequivalencefactorsrespectively,forthelandusetypeinquestion.Yisevaluatedannuallyastheratioofthelocalyieldforproductionofagenericproduct(Yn)totheyieldforproductionofthesameproductintheworld(Yw)asawhole(Gallietal.,2007).
Inordertoproperlyallocatetheembodiedfootprintscarriedbytradeflowsofproductsandkeeptrackofthebiocapacity,Consump-tionEcologicalFootprint(EFC)iscalculatedbyaddingthefootprintembeddedinlocallyproducedproducts(EFP)andtheimportedorinputproducts(EFI)andsubtractingthefootprintofexportedoroutputproducts(EFE)(Gallietal.,2012a,b;Boruckeetal.,2013),tothefinalfootprintvalueasinEq.(2):
EFC=EFP+EFI−EFE
(2)
Amongsixland-usetypes,thecarbonuptakelandisexclusivelydedicatedtotrackawasteproduct:carbondioxide,sincemostter-restrialcarbonuptakeinthebiosphereoccursinforests,socarbonuptakelandisassumedtobeforestlandbytheecologicalfootprintmethodology(Boruckeetal.,2013),asinEq.(3):
EFocean)
carbonuptakeland=
Pc(1−SY×c
r
(3)
wherePcistheannualanthropogenicemissions(production)ofcarbondioxide;Soceanisthefractionofanthropogenicemissionssequesteredbyoceans,aboutone-thirdofanthropogenicemissionsareabsorbedbytheoceansfromthetotalanthropogenicemissions(IPCC,2001);Ycistheannualrateofcarbonuptakeperhectareofworldaverageforestland.
Biocapacityreflectstheentirebiologicallyproductiveareaandrepresentsthemaximumlevelofresourcesupply,whichisthecounterpartofthefootprint(WackernagelandRees,1996;
X.Lietal./EcologicalIndicators39 (2014) 153–159
155
Wackernageletal.,1999;Monfredaetal.,2004).Thecalculationofthetotalbiocapacity(BC)canbeexpressedasfollows:
BC=
nai×ri×Yi
i=1
whereaiisthereallandareafortheithcategoryoflandtype(gha),Yiistheyieldfactoroftheithcategoryoflandtype,andriistheequivalencefactoroftheithcategoryoflandtype.Incal-culatingBC,weadoptedthesuggestionoftheWorldCommissiononEnvironmentandDevelopmentthattheareaofbiologicallypro-ductivelandshouldbedecreasedby12%toaccountforbiodiversityconservation.
Thedatausedinthecalculationofecologicalfootprintandbio-capacityaredrawnfromtheStatisticalYearbooksofAbagCounty,EastUjimqinCounty,WestUjimqinCounty,andXilinhotCitythatwerepublishedbythelocalgovernmentsfrom2002to2011;Thoughtheyieldfactorsandequivalencefactorsmayalterduetothelandusepatternandregionaltechnologydevelopmentindifferentyears,thevariationisnormallyslighttoaffectthetotaltimeseriesofecologicalfootprint,thus,wereferthevalueoftheyieldfactorstotheotherpapersinthecalculation(Xuetal.,2003;Wackernageletal.,1999);thecalculationofPcisonthebasisoftheaccountingmethodsofcarbondioxideemissionspublishedintheFourthAssessmentReport(AR4)oftheUnitedNationsInter-governmentalPanelonClimateChange(IPCC,2007;Li,2013),Ycisobtainedfromrelevantliterature(VenetoulisandTalberth,2008).
3.2.Evaluationmodelofecologicalsecurity
Bothecologicalfootprintsandbiocapacityusestandardizedhectaresthatallowforthemeaningfulcomparisonbetweeneachother.Hence,aggregatehumandemand(ecologicalfootprint)andnature’ssupply(biocapacity)canbedirectlycomparedtoeachother.Thecomponentandaggregateareasarecommensurable.Meanwhile,thecomparisonresultrevealswhethertheexistingnaturalcapitalissufficienttosupportthecurrentconsumptionandproductionpatterns(Monfredaetal.,2004).Becauseoftheregionaltradeinenergyandproducts,theecologicalpressureofresourceoutputareacomebothfromlocalproduction/consumptionofresourcesandenergyandfromconsumptionofresourcesduringproductionprocessesatahigherlevel.Thus,theecologicalpres-suremustaccountforbothresource-outputareasandresourceinputareas,inproportiontotheratioofproductconsumptiontoproduction.
3.2.1.CFPI
Inthispaper,weaccountedforconsumptionpressurebyusingtheCFPIindex:
CFPIEF=
c
BC
(7)
CFPImainlyreflectstheecologicalpressurewhichiscausedbytheconsumptionofresourcesandsequesteringcarbondiox-ideemissionsetc.intheindustryanddailylifeoflocalresidents.IfCFPI>1,theconsumptionfootprintisgreaterthantheBCinthestudyarea,leadingtoanecologicaldeficitthatcanonlybemitigatedbyimportingresourcesfromoutsideoroveruseoflocalresources.IfCFPI<1,theconsumptionfootprintislessthantheBC,whichmeanstheregionisecologicallysecureandthereisthepotentialforadditionaldevelopment.IfCFPI=1,thesystemisinequilibriumbetweenconsumptionandBC.
3.2.2.PFPI
Inthispaper,weaccountedforproductionpressurebyusingthePFPIindex:
PFPIEFp=
BC
(8)
whereEFpisproductionecologicalfootprint,PFPImainlyreflectstheproductionpressureforproducingfoodandgeneratingelec-tricityandsoon.IfPFPI>1whichmeanstheproductionconsumesthelocalnaturalresourcesexcessivelyleadingtoecologicalover-shoot;IfPFPI<1,theproductionfootprintislessthantheBC,whichindicatesthatproductionisecologicallysafeandthattheremayberoomforadditionaldevelopment.IfPFPI=1,thesystemisinequilibriumbetweenproductionandBC.
3.2.3.Ecologicalfootprintcontributionindex(EFCI)
Wedeterminedthebalancebetweenproductionandconsump-tionpressureusingtheEFCIindex:
EFCIEFp−EFc
=
EF(9)
c
IfEFp>EFc,EFCIwillbepositive,andthestudyareaisdefinedasaresourceandproductoutputarea.Thismeansthatlocalecolog-icalsecurityisaffectedbybothlocalandexternalproductionandconsumption,butthatproductionisplayingamoreimportantrole;asaresult,theecologicalpressurewillbetransferredfrominputtooutputareainfluencingthelocalecologicalsecurity.IfEFp Todescribetheecologicalsecurityofastudyarea,wedefinetheparameterT,whosevaluerepresentsthedominantparameter(productionorconsumption)forthatarea: IfEFCI≥0, thenT=PFPI If(10) EFCI<0, thenT=CFPI Table1summarizesthelevelsofecologicalsecuritybasedontheparametersinthismodel. 4.Results 4.1.VariationsoftheecologicalfootprintandBC Thenationalenergyaccountneedstobecorrectedbecauseoftrade(Wackernageletal.,1999),andsodoestheecologicalfoot-printaccountduetothesamereason,someofthecarbonfootprintwhichcomefromconsumingenergyneedstobedeductedfromtheecologicalfootprintaccountasenergyisconsumedtopro-duceexportgoods,whilethecarbonfootprintembodiedinimportgoodsneedstobeadded.However,thestudyareaisarelativelysmalladministrativedistrictforwhichtheimport/exportdataisnotavailable,thustheimpactoftradeontheecologicalfootprint,willdistortstherelativesizeoffootprintsofconsumption,butwewillbeabletocalculatethenetinputoroutputecologicalfootprintviathecomparisonoffootprintofproductionandconsumption,andthentojudgewhetherthepressurefortheecologicalsecurityisfromresourceoutputorexcessiveconsumption.TheresultsofEFpandEFcofthestudyareawereshowninFigs.2and3,whichgener-allyincreasedfrom2001to2010.Theproductionfootprintin2010hadincreasedto1.81timesits2001valueof1.65×106gha,reach-ing3.00×106ghain2010(Fig.2),socioeconomicdevelopmentacceleratedthefoodproductionandtheelectricitygeneration, 156X.Lietal./EcologicalIndicators39 (2014) 153–159 Table1 Summaryofthecoupledecologicalsafetyassessmentmodel. Scenario Index Ecologicalsecuritystate Interpretation TheproductionfootprintandconsumptionfootprintarebeyondtheBC,sotheecologicalpressure transferredfromoutsidethestudyareaincreases,therebyincreasingthethreattoecologicalsecurityisdecidedbybothPFPIandCFPI TheproductionandconsumptionfootprintsarebothwithintheBC,sothestudyareahaspotentialforadditionaldevelopment TheconsumptionfootprintiswithintheBC,buttheproductionfootprintexceedsBC,sothethreattoecologicalsecurityisdecidedbythePFPI EFCI≥0(EFp≥EFc) T=PFPI PFPI>CFPI>1 Veryrisky 1≥PFPI>CFPI PFPI>1,CFPI<1 T<0.5verysafe0.5≤T<0.8safe 0.8≤T≤1.0notverysafeRisky EFCI<0(EFp CFPI>PFPI>1 Veryrisky 1≥CFPI>PFPI CFPI>1,PFPI<1 T<0.5verysafe0.5≤T≤0.8safe 0.8≤T≤1.0notverysafeRisky Theproductionandconsumptionfootprintsare beyondtheBC,sothethreattoecologicalsecurityisdecidedbybothCFPIandPFPI TheproductionandconsumptionfootprintsarebothwithintheBC,sothestudyareahasthepotentialforadditionaldevelopment TheproductionfootprintiswithintheBC,butthe consumptionfootprintisbeyondtheBC,sothethreattoecologicalsecurityisdecidedbyCFPI Fig.2.Changesintheproductionfootprintandbiocapacity(BC)inthetypicalInnerMongoliansteppefrom2001to2010. productivelandtypeofthesteppewasgrassland,andtheareasofothertypesofproductivelandonlychangedslightlyduringthisperiod. TheEFpwashigherthantheBCfrom2001to2010(Fig.2),andthegapbetweenthemmeanstheproductionconsumedthelocalnaturalresourcesexcessivelyleadingtoecologicalovershoot.TheEFcwaslowerthantheBCfrom2001to2004,whichmeansresourcesusedandwastesproducedcanbeaffordedintherangeofthebiocapacityandtheregionisecologicallysecureandthereisthepotentialforadditionaldevelopment.However,theconsump-tionfootprintwashigherthantheBCthereafter,indicatingthatthetypicalsteppesareexperiencinganecologicaldeficitbecauseoftheirdemandforresourcesisnotmetbyasufficientlocalsupply,expressedbyBC.Sincethereislittleimportfromotherdistricts,ithastorelyontheoveruseoflocalresourceswithrespecttohigherlocaldemand. 4.2.ChangesinCFPI,PFPI,andEFCI especiallyinXilinhotCity;thegrowthoftheproductionfootprintacceleratedaccordingly.ThegrowthrateofEFpofXilinhotCitywashigherthanthoseoftheotherareas,andaccountedfor38.5%ofthetotalproductionfootprintin2010.TheEFcincreasedto4.51timesits2001valueof0.62×106gha,reaching2.80×106ghain2010(Fig.3)asaresultofimprovementsintheregionalstandardofliving.BCchangedslightly,from1.16×106ghain2001to1.31×106ghain2010,becausethedominantbiologically Fig.3.Changesintheconsumptionfootprintandbiocapacity(BC)inthetypicalInnerMongoliansteppefrom2001to2010. Usingourcoupledevaluationmodelforecologicalsecurity,wecalculatedtheecologicalfootprintandBCforeachoftheregions,andusedtheresultingCFPI,PFPI,andEFCIvaluesfortotalstudyarea,AbagCounty,EastUjimqinCounty,WestUjimqinCounty,andXilinhotCitybasedontherelevantstatisticaldatafrom2001to2010. Accordingtothecoupledmodel,ifbothPFPI>1andCFPI>1,theecologicalsecuritywasconsideredtobeveryrisky,whereasifCFPI<1andPFPI>1orCFPI>1whilePFPI<1,theecologicalsecu-ritywasconsideredtoberisky.Ourresultsshowedthatthetotalstudyareawasveryriskyfrom2005to2010andwasriskyfrom2001to2004(Fig.4a).AbagCountywasriskyuntil2009,andonly2010becameveryrisky(Fig.4b).EastUjimqinCountywasriskyfrom2001to2007and2009,andtheotheryearswasveryrisky(Fig.4c).WestUjimqinwasriskyfrom2001to2006andthereafterbecameveryrisky(Fig.4d).XilinhotCitywasveryriskythrough-outthestudyperiod(Fig.4e).Accordingtotheanalysisthechangesintheconsumptionfootprintandproductionfootprintofdifferentlandusetypesfrom2001to2010fortotalstudyareas(Fig.5aandb),wecanfindthattheriskmainlycomesfromgrazinglandintermsofproductionfootprint,sincethetypicalsteppecovers88%ofthetotalstudyarea,andthebiocapacityvariedfrom0.80×106ghato0.84×106gha,whichwasmuchlowerthantheproductionfoot-printrangingfrom1.38×106ghato1.96×106ghainthesameperiodfrom2001to2010;Regardingtheconsumptionfootprint, X.Lietal./EcologicalIndicators39 (2014) 153–159 157 IPFC IdnCaF EIPFPIPFC IdnCaF EIPFPICFCI dnCaF EIPFPICFC IdnCaF EIPFPIPFC IdnCaF EIPFPFig.4.(a)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)intotalstudyarea.(b)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forAbagCounty.(c)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontri-butionindex(EFCI)forEastUjimqinCounty.(d)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forWestUjimqinCounty.(e)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forXilinhotCity. theriskismainlyinducedbythecarbonuptakeland,whichraised14.8timesfrom0.14×106ghain2001to2.18×106ghain2010,becauseoftherequirementfortheenergyconsumption,whichleadtocarbondioxideemissionsduringthesocioeconomicdevelop-ment. MostoftheEFCIvaluesweregreaterthan0,exceptforXilinhotCityfrom2002to2010,totalstudyareaandWestUjimqinCountyat2008,andEastUjimqinCountyat2010(Fig.4a–e).ThismeansthattheecologicalsecuritywasdeterminedprimarilybythePFPI,asa Fig.5.(a)Changesintheproductionfootprintoflandusetypesfrom2001to2010fortotalstudyareas.(b)Changesintheconsumptionfootprintoflandusetypesfrom2001to2010fortotalstudyareas. resultofincreasingPFPI,theecologicalpressuretransferredfromoutsidetheregionincreasedobviouslyandincreasinglythreatenedthelocalecologicalsecurity.EFCIshowedatrendofdecreaseinthestudyarea,whichmeansthatalthoughthethreattoecologi-calsecuritycameprimarilyfromtheproductionofresourcesbuttheinfluenceofexternalpressureonecologicalsecuritybeginstochangetointernalpressure.EFCIvalueswerelessthan0inXil-inhotCityafter2001,thismeansthattheecologicalsecuritywasdeterminedprimarilybytheCFPI.Thelocalconsumptionstructureshouldbeadjustedtoaddmoreinputresourcesfromoutsideandreducetheover-consumptionoflocalresourcesinordertoreduceCFPI,andthentheecologicaldeficit. 5.Discussion MostofEFCIwaspositive,andPFPIorCFPIweregreaterthan1.Theseresultsindicatedthattheregion’secologicalsecuritywasthreatenedmorebyoutputtingelectricityandotherproductsthanbylocalconsumptionpressure.Thegrossnationalproduct(GNP)ofourstudyareainInnerMongoliaincreasedto7.77timesits2001valueof41.46×109RMB,reaching322.21×109RMBin2010.Thisrapiddevelopmentacceleratedtheproductionandconsumptionofresources,asaresult,theproductionfootprintincreasedto12.24timesits2001value,whichwasfasterthantheGNPgrowthrate.Inaddition,thedevelopmentwasachievedatthecostofexces-siveexploitationoftheregion’sresources.Basedonourmodelforevaluatingecologicalsecurity,theonlyeffectivewaytoreducethis 158X.Lietal./EcologicalIndicators39 (2014) 153–159 ecologicalpressureandimprovethelevelofecologicalsecuritywouldbetodecreasetheproductionfootprintorimprovetheBC.However,theBCchangedonlyslightlybecausemostofthelandusewaspasture,whichaccountedfor89%ofthetotallandarea;theotherland-useandcovertypeshadlittleimpactontheBC.Therefore,improvingthelevelofecologicalsecuritywillrequireareductionoftheproductionfootprintbymeansofmoreappropri-ateallocationofresources.Therefore,ecologicalprotectionofthesteppesshouldfocusonmoreefficientresourceallocation,therebymitigatingthethreattotheecologicalsecuritycausedbysocioeco-nomicdevelopmentandhelpingtoachievesustainableutilizationoftheregion’sresources. TheEFmethodologyusesdataonenergyandresourcescon-sumption,wastegeneration(measuredascarbondioxide)toestimatethetotalecosystemarea(intermsofglobalaveragehectares–gha)(Kissingeretal.,2013),Whichrequiresaconsid-erationofbothconsumptionfootprintandproductionfootprint.Therearesixland-usetypesformeasuringtheEF,whichiscon-trastedwithfivedemandcategoriesofBC.Thereasonforthisdiscrepancyisthattwodemandcategories,forestproductsandcarbonsequestration,competeforthesamebiocapacitycategory:forestland(Boruckeetal.,2013).BothEFandBCusestandard-izedhectarestomeasurethedemandonnaturalcapitalversustheabilityofnaturalcapitaltomeetthedemand.Hence,thecomponentandaggregateareasarecommensurable(Monfredaetal.,2004).Onthisbasis,weintroducedthePFPI,CFPI,andEFCIparameterstoclarifytherootcausesofthethreatstoecologicalsecurity.Infutureresearch,theseindicesshouldbeexpandedsothatouranalysiscanaccountformoreofthefactorsthatdeterminemankind’secologicalfootprintanditsimpactsonthebiocapac-ity. Becauseunifiedstatisticsandthedataofimportandexportwerenotavailableineachcounty’sstatisticalyearbooks,weadoptedcommonitemsinselectingtheconsumptionandproductionitemsthatformedthebasisofourcalculations.Thismeansthattheresultsforeachareacannotbefullycompared,butthatwecanstillusetherelativechangestocomparetheregions.Thus,ouranalysisprovidesausefulmeasureofthechangesinregionalecologicalsecurityovertime.Thecoupledassessmentmodelconsiderstherelationshipbetweenecologicalsecurityandlocalproductionandconsumptionpressures,andtherebyreflectsthepressureonthelocalenvironmentcreatedbytheproductionofresourcesaswellastheirconsumption.However,itwillbenecessarytofindwaystofurtherimprovetheecologicalsecurity.Thiswillbethesubjectofourfutureresearch. Acknowledgments TheresearchwasfundedbytheNationalNaturalScienceFundofChina(number:41030535),theNationalKeyBasicResearchProgramofChina(2014CB138803),theProgramforChangjiangScholarsandInnovativeResearchTeaminUni-versity(IRT1108),andtheInternationalCooperationProject(2013DFR30760). References Andersen,P.P.,Lorch,R.P.,1998.Foodsecurityandsustainableuseofnatural resources:a2020vision.Ecol.Econ.26,1–10. Bartel,A.,2000.Analysisoflandscapepattern:towardsa“top-down”indicatorfor evaluationoflanduse.Ecol.Model.130,87–94. Bonheur,N.,Lane,B.D.,2002.Naturalresourcesmanagementforhumansecurityin Cambodia’sTonleSapBiosphereReserve.Environ.Sci.Pollut.5,33–41. Bastianoni,S.,Niccolucci,V.,Pulselli,R.M.,Marchettini,N.,2012.Indicatorandindi-candum:“Sustainableway”vs“prevailingconditions”intheecologicalfootprint.Ecol.Indic.16,47–50. Borucke,M.,Moore,D.,Cranston,G.,Gracey,K.,Iha,K.,Larson,J.,Lazarus,E.,Morales, J.C.,Wackernagela,M.,Galli,A.,2013.Accountingfordemandandsupplyofthe biosphere’sregenerativecapacity:TheNationalFootprintAccounts’underlyingmethodologyandframework.Ecol.Indic.24,518–533. Chen,D.D.,Gao,W.S.,Chen,Y.Q.,Zhang,Q.,2010.Ecologicalfootprintanalysisof foodconsumptionofruralresidentsinChinainthelatest30years.Agric.Agric.Sci.Procedia1,106–115. Chen,K.P.,2004.Artificialneuralnetworksforriskdecisionsupportinnatural hazards:acasestudyofassessingtheprobabilityofhousesurvivalfrombush-fires.Environ.Model.Assess.9(3),189–199. Collins,A.,Flynn,A.,Wiedmann,T.,Barrett,J.,2006.Theenvironmentalimpactsof consumptionatasubnationallevel–theecologicalfootprintofCardiff.J.Ind.Ecol.10(3),9–24. Dai,F.Q.,Nan,L.,Liu,G.C.,2010.Assessmentofregionalecologicalsecurity basedonecologicalfootprintandinfluentialfactorsanalysis:acasestudyofChongqingMunicipality,China.Int.J.Sustain.Dev.World.Ecol.17(5),390–400. Duffy,S.B.,Michael,S.C.,Grant,W.E.,2001.Simulatingland-usedecisionsintheLa AmistadBiosphereReservebufferzoneinCostaRicaandPanama.Ecol.Model.140,9–29. Galli,A.,Kitzes,J.,Wermer,P.,Wackernagel,M.,Niccolucci,V.,Tiezzi,E.,2007.An explorationofthemathematicsbehindtheecologicalfootprint.Int.J.Ecodyn.2(4),250–257. Galli,A.,etal.,2012a.Assessingtheglobalenvironmentalconsequencesofeconomic growththroughtheecologicalfootprint:afocusonChinaandIndia.Ecol.Indic.17,99–107. Galli,A.,etal.,2012b.Integratingecological,carbonandwaterfootprintintoa“Foot-printFamily”ofindicators:definitionandroleintrackinghumanpressureontheplanet.Ecol.Indic.16,100–112. Hodson,M.,Marvin,S.,2009.‘Urbanecologicalsecurity’:anewurbanparadigm? Int.J.UrbanReg.Res.33(1),193–215. Huang,Q.,Wang,R.H.,Ren,Z.Y.,Li,J.,Zhang,H.Z.,2007.Regionalecologicalsecu-rityassessmentbasedonlongperiodsofecologicalfootprintanalysis.Resour.Conserv.Recycl.51(1),24–41. IPCC,2001.ClimateChange2001:TheScientificBasis.CambridgeUniversityPress, IntergovernmentalPanelonClimateChange(IPCC),Cambridge,UK. IPCC,2007.ClimateChange2007:theFourthAssessmentReport(AR4)oftheUnited NationsIntergovernmentalPanelonClimateChange(IPCC).CambridgeUniver-sityPress,Cambridge,UK. Kullenberg,G.,2002.Regionalco-developmentandsecurity:acomprehensive approach.OceanCoast.Manage.45,761–776. Kissinger,M.,Sussman,C.,Moore,J.,Rees,W.E.,2013.Accountingfortheecological footprintofmaterialsinconsumergoodsattheurbanscale.Sustainability5,1960–1973. Lenzen,M.,Murray,S.A.,2001.Amodifiedecologicalfootprintmethodanditsappli-cationtoAustralia.Ecol.Econ.37,229–255. Li,Z.C.,He,J.H.,2011.Regionalecologicalsecurityassessmentbasedon improvedmethodofecologicalfootprint–thecaseofShandongChangDaoCounty.In:Proc.2011Int.Symp.EconTransit.DevForeign-fundedEnter,pp.8–14. Liu,X.T.,Sheng,Z.F.,Wang,Y.L.,2011.Studyontourismecologicalfootprintof LoudiCityinHunan“3+5”urbanagglomeration.Appl.Mech.Mater.55–57,1566–1571. Li,X.,2013.AnresearchonregionaldifferencesofChina’scarbondioxideemissions-basedontheIPCCcarbonemissionsaccountingmethod.Territ.Nat.Resour.Study2,63–65. Lundquist,J.E.,2002.UseofFouriertransformstodefinelandscapescalesofanalysis fordisturbances:acasestudyofthinnedandunthinedforeststands.Landsc.Ecol.17(5),445–454. Monfreda,C.,Wackernagel,M.,Deumling,D.,2004.Establishingnationalnatural capitalaccountsbasedondetailedecologicalfootprintandbiologicalcapacityassessments.LandUsePolicy21(3),231–246. Onkal-Engin,G.,Guleda,D.,Ibrahim,H.H.,2004.Assessmentofurbanairqualityin Istanbulusingfuzzysyntheticevaluation.Atmos.Environ.38,3809–3815. Qing,Z.S.,Wu,S.H.,Zhao,D.S.,Dai,E.F.,2013.Temporal-spatialchangesininner mongoliangrasslanddegradationduringpastthreedecades.Agric.Sci.Technol.14(4),676–683. Senbel,M.,McDaniels,T.,Dowlatabadi,H.,2003.Theecologicalfootprint:anon-monetarymetricofhumanconsumptionappliedtoNorthAmerica.Glob.Environ.Change13(2),83–100. Stoglehner,G.,2003.Ecologicalfootprint–atoolforassessingsustainableenergy supplies.J.Clean.Prod.11(3),267–277. Tong,C.,2000.Reviewonenvironmentalindicatorresearch.Res.Environ.Sci.13(4), 53–55(inChinesewithEnglishabstract). Venetoulis,J.,Talberth,J.,2008.Refiningtheecologicalfootprint.Environ.Dev.Sus-tain.10(4),441–469. Wackernagel,M.,1998.Theecologicalfootprint:anindicatorofprogresstoward regionalsustainability.Environ.Model.Assess.51(1),511–529. Wackernagel,M.,Kitzes,J.,Moran,D.,Goldfinger,S.,Thomas,M.,2006.Theecological footprintofcitiesandregions:comparingresourceavailabilitywithresourcedemand.Environ.Urban18(1),103–112. Wackernagel,M.,Monfreda,C.,Erb,K.H.,Haberl,H.,Schulz,N.B.,2004.Ecological footprinttimeseriesofAustria,thePhilippines,andSouthKoreafor1961–1999:comparingtheconventionalapproachtoan‘actuallandarea’approach.LandUsePolicy21(3),261–269. Wackernagel,M.,Onisto,L.,Bello,P.,Linares,A.C.,Falfán,I.S.L.,García,J.M.,Guer-rero,A.I.S.,Guerrero,M.G.S.,1999.Nationalnaturalcapitalaccountingwiththeecologicalfootprintconcept.Ecol.Econ.29(3),375–390. X.Lietal./EcologicalIndicators39 (2014) 153–159 159 Wackernagel,M.,Rees,W.E.,1996.OurEcologicalFootprint:ReducingHuman ImpactontheEarth.NewSocietyPublishers,GabriolaIsland,BritishColumbia. Xu,Z.M.,Zhang,Z.Q.,Cheng,G.D.,Chen,D.J.,2003.Ecologicalfootprintcalculation anddevelopmentcapacityanalysisofChinain1999.Chin.J.Appl.Ecol.14(2),280–285(inChinesewithEnglishabstract). Zhang,X.S.,Gao,Q.,Yang,D.A.,Zhou,G.S.,Ni,J.,Wang,Q.,1997.Agradientanalysis andpredictiononthenortheastChinatransect(NECT)forglobalchangestudy.ActaBot.Sin.39(9),785–799(inChinesewithEnglishabstract). Zhu,L.,Qin,F.C.,2008.Forecastofsoilandwaterlossinopencastcoalmine-basedon No.1coalmineinShengliDiggingsofInnerMongolia.Bull.SoilWaterConserv.28(4),111–115(inChinesewithEnglishabstract). 因篇幅问题不能全部显示,请点此查看更多更全内容