您的当前位置:首页正文

Development of an ecological security evaluation method

2024-03-22 来源:客趣旅游网
EcologicalIndicators39 (2014) 153–159

ContentslistsavailableatScienceDirect

EcologicalIndicators

journalhomepage:www.elsevier.com/locate/ecolind

DevelopmentofanecologicalsecurityevaluationmethodbasedontheecologicalfootprintandapplicationtoatypicalstepperegioninChina

XiaobingLi∗,MeirongTian,HongWang,HanWang,JingjingYu

StateKeyLaboratoryofEarthSurfaceProcessesandResourceEcology,CollegeofResourcesScienceandTechnology,BeijingNormalUniversity,Beijing100875,China

article

info

abstract

Articlehistory:

Received20June2013

Receivedinrevisedform5December2013Accepted15December2013

Keywords:

EcologicalfootprintTypicalsteppe

EcologicalsecurityEvaluationmethod

Sustainabledevelopment

ThesteppesofInnerMongolialieinaregionwhicharesensitivetoglobalclimatechange.TheregionformsanimportantecologicalbarrieragainstsandstormsanditisalsostrategicallyimportantforthedevelopmentofChina’senergyandmineralresources.TodescribetheinfluenceofresourcesexploitationontheecologicalsecurityofthetypicalInnerMongoliansteppe,wedevelopedaconsumptionfootprintpressureindex(CFPI)andaproductionfootprintpressureindex(PFPI)basedontheecologicalfootprintconcept,anddevelopedanecologicalfootprintcontributionindex(EFCI)toassessthepressurescreatedbytransferringresourcesandproductsfromoutputareastoinputareas.Usingtheseindices,wedevel-opedacoupledecologicalsecurityassessmentmodeltoevaluatetheecologicalsecuritylevelofthetypicalsteppe.WeusedthemodeltocalculateCFPI,PFPI,andEFCIforthesteppeareaforthreecountiesandoneurbanregionofInnerMongoliafrom2001to2010.WefoundthatCFPIandPFPIincreasedthroughoutthestudyperiodinmostregions.Inaddition,EFCIwasgenerallypositive,whichindicatedtheecologicalsecurityofthetypicalsteppewasaffectedprimarilybytheelectricityandproductionoutputprocesses.Ourresultssuggestthattheecologicalsecurityofthestudyareahasbeenatseriousrisksince2005.

© 2013 Elsevier Ltd. All rights reserved.

1.Introduction

InChina,populationgrowthandsocioeconomicdevelopmenthavebeenaccompaniedbydepletionofenergyresourcesduetoexcessiveconsumption(Daietal.,2010).Thishasgraduallyledtoseriousecologicaldegradationandenvironmentaldam-age,whichhavechallengedindividuals,communities,andregions.Meanwhile,findingwaystoguaranteethehealthandsustain-abledevelopmentofregionalecosystemsdespiteofrisingenergyandresourcedemandhasbecomethefocusofresearcharoundtheworld(HodsonandMarvin,2009),ecologicalsecuritycon-ceptappearedinduecourse.Ecologicalsecuritywasconsideredasstrategicallyimportantasnationaldefense,economicsecurity,andfinancialsecurity(AndersenandLorch,1998;Duffyetal.,2001;Kullenberg,2002;BonheurandLane,2002).Maintainingglobalandregionalecologicalsecurity,andtherebypermittingsustain-ablesocioeconomicdevelopment,hasbecometheconsensusgoaloftheinternationalcommunity.

Ecologicalsecurityevaluationiscomprehensive,andthemainmethodsthathavebeenusedincludethepressure-state-response

∗Correspondingauthor.Tel.:+861058807212;fax:+861058807212.E-mailaddress:tianmeirong007@163.com(X.Li).

model(Tong,2000),thesystemclusteringmethod(Lundquist,2002),theecologicalfootprintmethod(Wackernagel,1998;LenzenandMurray,2001;Huangetal.,2007;LiandHe,2011;Bartel,2000),thecomprehensiveindexmethod(Bartel,2000),thefuzzycomprehensiveevaluationmethod(Onkal-Enginetal.,2004),andtheneuralnetworkmodels(Chen,2004).Amongthequantitativemethodsforecologicalsecurityassessment,theecologicalfootprintmethodissimpleandclearintermsofconceptandprinciples.Ithasthereforebeenappliedinlong-termstudiesofecologicalriskandinregionalcomparisons(Stoglehner,2003;Collinsetal.,2006;Senbeletal.,2003;Wackernageletal.,2004,2006).Alsothisapproachcanbecomeaneasy-to-readmeasurementtoolforecologicalsustaina-bility(Wackernageletal.,1999),whichcanalsobeusedtojudgewhetheracountry’soraregion’sdevelopmentremainswithinthebiocapacitybycomparingtheconsumptionandproductionofresourcesintheregion,therebyrevealstheregionalecologi-calsecuritystatusandthepotentialforsustainabledevelopment(Chenetal.,2010;Liuetal.,2011).

China’sInnerMongoliaAutonomousregioncoversabout12.5%ofthecountry’stotallandarea.Itisfamousforitslushgrasslandsandrichmineralresources,andhasbecomemainoutputareaofcoalresourcesinChina.GiventheimportanceofcoalasanenergysourceinChina,theregionthereforeprovidesanimportantcon-tributiontothecountry’ssocioeconomicdevelopment.However,

1470-160X/$–seefrontmatter© 2013 Elsevier Ltd. All rights reserved.http://dx.doi.org/10.1016/j.ecolind.2013.12.014

154X.Lietal./EcologicalIndicators39 (2014) 153–159

Fig.1.Locationofthestudyarea.

thisregionalsoplaysavitalroleasanecologicalbarrierinnorth-ernChina.ThetypicalsteppesofInnerMongolialiewithintheNortheastChinaTransectundertheInternationalGeosphereBio-sphereProgram(IGBP)whichisasensitiveareaoftheglobalchange(Zhangetal.,1997).However,continuoussocioeconomicdevelop-mentwithexcessiveexploitationofresourcescouldinducesoilandwaterlossandgrasslanddegradation(ZhuandQin,2008;Qingetal.,2013),whichthreatenedtheecologicalsecurityofthesteppes.

Inthispaper,wewillintroducethestudyareaanddescribeourdatasources;provideanoverviewoftheecologicalfootprintmethodandtheconceptofbiocapacity,andproposethreeindices,theproductionfootprintpressureindex(PFPI),theconsumptionfootprintpressureindex(CFPI)andecologicalfootprintcontribu-tionindex(EFCI),whichweusetodevelopacoupledecologicalsecurityassessmentmodelandevaluatetheecologicalsecurityoffourtypicalsteppeareasaswellasanalyzeanddiscusstheimplica-tionsofourresults.Thegeneralobjectiveofthestudyistomeasurethepressureimposedbytheoutsideregionstothestudyarea,therebyprovidingabasisfordevelopingaplanformoresustainableregionaldevelopment.

2.Studyarea

ThetypicalsteppesinthestudywerelocateintheeasternpartofInnerMongolia,coveringanareaof1.1×105km2(Fig.1).Ourstudyareacomprisesthreecountiesandoneurbanregion:AbagCounty,EastUjimqinCounty,WestUjimqinCountyandXilinhotCity.Thestudyareahasacontinentalaridtosemiaridclimate,withannualaveragetemperaturesof−1to4◦C,anannualmeanprecipitationof150–450mm,andanannualevaporationof1600–2400mm,whichincreasesfromeasttowest.Theelevationdecreasesgraduallyfrom1800minthesoutheastto800minthenorthwest.ThevegetationisdominatedbyxeromorphicgrassessuchasStipagrandisP.Smirn,StipakryloviiRoshev,LeymuschinensisTzvel,CleistogenessquarrosaKengetal.

Thepopulationinthestudyareahadgrowngradually,increas-ingfrom3.0×105in2001to3.5×105in2010.Withtherapidsocioeconomicdevelopment,percapitaGDPincreasedtoninetimesofitsoriginallevel,from1×104RMBin2001to9×104RMBin2010.Simultaneously,energyconsumptionhadincreasedrapidlyfrom0.34Mtsce(standardcoalequivalent)in2001to2.8486Mtscein2010.Duringthisperiod,theelectricitysupplyincreasedfrom429.36GW-hto495.88GW-h.

3.Methods

3.1.Evaluationmodelofecologicalfootprintandbiocapacity

Ecologicalfootprintisakindofsimplemethodologybutcom-prehensivewayforaccountingthefundamentalconditionsforsustainability.Itisaresourceandemissionsaccountingtoolmeasuringdirectandindirecthumandemandfortheplanet’sregenerativecapacity(biocapacity)andcomparingitwiththebiocapacityavailableontheplanet(Wackernageletal.,1999;Monfredaetal.,2004;Gallietal.,2012a,b),therearesixland-usetypesformeasuringtheecologicalfootprint:cropland,forestland,grazingland,fishinggrounds,built-upland,andcarbonuptakeland(fortheabsorptionofanthropogeniccarbondioxideemissions)(Gallietal.,2012a,b;Boruckeetal.,2013)Theecologicalfootprint(EF)canbeexpressedintheunitofglobalhectares-gha(Monfredaetal.,2004;Bastianonietal.,2012;Gallietal.,2012a,b)throughamulti-stepprocess,asfollows:

EFQQY=

Yn×Y×r=Yn×nY×r=Q×rwYw

(1)

whereQistheamountofaproductharvestedorCO2emitted,YnisthenationalaverageyieldfortheproductQ(oritscarbonuptakecapacityincaseswhereQiscarbondioxide),andYandraretheyieldandequivalencefactorsrespectively,forthelandusetypeinquestion.Yisevaluatedannuallyastheratioofthelocalyieldforproductionofagenericproduct(Yn)totheyieldforproductionofthesameproductintheworld(Yw)asawhole(Gallietal.,2007).

Inordertoproperlyallocatetheembodiedfootprintscarriedbytradeflowsofproductsandkeeptrackofthebiocapacity,Consump-tionEcologicalFootprint(EFC)iscalculatedbyaddingthefootprintembeddedinlocallyproducedproducts(EFP)andtheimportedorinputproducts(EFI)andsubtractingthefootprintofexportedoroutputproducts(EFE)(Gallietal.,2012a,b;Boruckeetal.,2013),tothefinalfootprintvalueasinEq.(2):

EFC=EFP+EFI−EFE

(2)

Amongsixland-usetypes,thecarbonuptakelandisexclusivelydedicatedtotrackawasteproduct:carbondioxide,sincemostter-restrialcarbonuptakeinthebiosphereoccursinforests,socarbonuptakelandisassumedtobeforestlandbytheecologicalfootprintmethodology(Boruckeetal.,2013),asinEq.(3):

EFocean)

carbonuptakeland=

Pc(1−SY×c

r

(3)

wherePcistheannualanthropogenicemissions(production)ofcarbondioxide;Soceanisthefractionofanthropogenicemissionssequesteredbyoceans,aboutone-thirdofanthropogenicemissionsareabsorbedbytheoceansfromthetotalanthropogenicemissions(IPCC,2001);Ycistheannualrateofcarbonuptakeperhectareofworldaverageforestland.

Biocapacityreflectstheentirebiologicallyproductiveareaandrepresentsthemaximumlevelofresourcesupply,whichisthecounterpartofthefootprint(WackernagelandRees,1996;

X.Lietal./EcologicalIndicators39 (2014) 153–159

155

Wackernageletal.,1999;Monfredaetal.,2004).Thecalculationofthetotalbiocapacity(BC)canbeexpressedasfollows:

BC=

󰀁

nai×ri×Yi

i=1

whereaiisthereallandareafortheithcategoryoflandtype(gha),Yiistheyieldfactoroftheithcategoryoflandtype,andriistheequivalencefactoroftheithcategoryoflandtype.Incal-culatingBC,weadoptedthesuggestionoftheWorldCommissiononEnvironmentandDevelopmentthattheareaofbiologicallypro-ductivelandshouldbedecreasedby12%toaccountforbiodiversityconservation.

Thedatausedinthecalculationofecologicalfootprintandbio-capacityaredrawnfromtheStatisticalYearbooksofAbagCounty,EastUjimqinCounty,WestUjimqinCounty,andXilinhotCitythatwerepublishedbythelocalgovernmentsfrom2002to2011;Thoughtheyieldfactorsandequivalencefactorsmayalterduetothelandusepatternandregionaltechnologydevelopmentindifferentyears,thevariationisnormallyslighttoaffectthetotaltimeseriesofecologicalfootprint,thus,wereferthevalueoftheyieldfactorstotheotherpapersinthecalculation(Xuetal.,2003;Wackernageletal.,1999);thecalculationofPcisonthebasisoftheaccountingmethodsofcarbondioxideemissionspublishedintheFourthAssessmentReport(AR4)oftheUnitedNationsInter-governmentalPanelonClimateChange(IPCC,2007;Li,2013),Ycisobtainedfromrelevantliterature(VenetoulisandTalberth,2008).

3.2.Evaluationmodelofecologicalsecurity

Bothecologicalfootprintsandbiocapacityusestandardizedhectaresthatallowforthemeaningfulcomparisonbetweeneachother.Hence,aggregatehumandemand(ecologicalfootprint)andnature’ssupply(biocapacity)canbedirectlycomparedtoeachother.Thecomponentandaggregateareasarecommensurable.Meanwhile,thecomparisonresultrevealswhethertheexistingnaturalcapitalissufficienttosupportthecurrentconsumptionandproductionpatterns(Monfredaetal.,2004).Becauseoftheregionaltradeinenergyandproducts,theecologicalpressureofresourceoutputareacomebothfromlocalproduction/consumptionofresourcesandenergyandfromconsumptionofresourcesduringproductionprocessesatahigherlevel.Thus,theecologicalpres-suremustaccountforbothresource-outputareasandresourceinputareas,inproportiontotheratioofproductconsumptiontoproduction.

3.2.1.CFPI

Inthispaper,weaccountedforconsumptionpressurebyusingtheCFPIindex:

CFPIEF=

c

BC

(7)

CFPImainlyreflectstheecologicalpressurewhichiscausedbytheconsumptionofresourcesandsequesteringcarbondiox-ideemissionsetc.intheindustryanddailylifeoflocalresidents.IfCFPI>1,theconsumptionfootprintisgreaterthantheBCinthestudyarea,leadingtoanecologicaldeficitthatcanonlybemitigatedbyimportingresourcesfromoutsideoroveruseoflocalresources.IfCFPI<1,theconsumptionfootprintislessthantheBC,whichmeanstheregionisecologicallysecureandthereisthepotentialforadditionaldevelopment.IfCFPI=1,thesystemisinequilibriumbetweenconsumptionandBC.

3.2.2.PFPI

Inthispaper,weaccountedforproductionpressurebyusingthePFPIindex:

PFPIEFp=

BC

(8)

whereEFpisproductionecologicalfootprint,PFPImainlyreflectstheproductionpressureforproducingfoodandgeneratingelec-tricityandsoon.IfPFPI>1whichmeanstheproductionconsumesthelocalnaturalresourcesexcessivelyleadingtoecologicalover-shoot;IfPFPI<1,theproductionfootprintislessthantheBC,whichindicatesthatproductionisecologicallysafeandthattheremayberoomforadditionaldevelopment.IfPFPI=1,thesystemisinequilibriumbetweenproductionandBC.

3.2.3.Ecologicalfootprintcontributionindex(EFCI)

Wedeterminedthebalancebetweenproductionandconsump-tionpressureusingtheEFCIindex:

EFCIEFp−EFc

=

EF(9)

c

IfEFp>EFc,EFCIwillbepositive,andthestudyareaisdefinedasaresourceandproductoutputarea.Thismeansthatlocalecolog-icalsecurityisaffectedbybothlocalandexternalproductionandconsumption,butthatproductionisplayingamoreimportantrole;asaresult,theecologicalpressurewillbetransferredfrominputtooutputareainfluencingthelocalecologicalsecurity.IfEFp3.2.4.Coupledecologicalsecurityassessmentmodel

Todescribetheecologicalsecurityofastudyarea,wedefinetheparameterT,whosevaluerepresentsthedominantparameter(productionorconsumption)forthatarea:

IfEFCI≥0,

thenT=PFPI

If(10)

EFCI<0,

thenT=CFPI

Table1summarizesthelevelsofecologicalsecuritybasedontheparametersinthismodel.

4.Results

4.1.VariationsoftheecologicalfootprintandBC

Thenationalenergyaccountneedstobecorrectedbecauseoftrade(Wackernageletal.,1999),andsodoestheecologicalfoot-printaccountduetothesamereason,someofthecarbonfootprintwhichcomefromconsumingenergyneedstobedeductedfromtheecologicalfootprintaccountasenergyisconsumedtopro-duceexportgoods,whilethecarbonfootprintembodiedinimportgoodsneedstobeadded.However,thestudyareaisarelativelysmalladministrativedistrictforwhichtheimport/exportdataisnotavailable,thustheimpactoftradeontheecologicalfootprint,willdistortstherelativesizeoffootprintsofconsumption,butwewillbeabletocalculatethenetinputoroutputecologicalfootprintviathecomparisonoffootprintofproductionandconsumption,andthentojudgewhetherthepressurefortheecologicalsecurityisfromresourceoutputorexcessiveconsumption.TheresultsofEFpandEFcofthestudyareawereshowninFigs.2and3,whichgener-allyincreasedfrom2001to2010.Theproductionfootprintin2010hadincreasedto1.81timesits2001valueof1.65×106gha,reach-ing3.00×106ghain2010(Fig.2),socioeconomicdevelopmentacceleratedthefoodproductionandtheelectricitygeneration,

156X.Lietal./EcologicalIndicators39 (2014) 153–159

Table1

Summaryofthecoupledecologicalsafetyassessmentmodel.

Scenario

Index

Ecologicalsecuritystate

Interpretation

TheproductionfootprintandconsumptionfootprintarebeyondtheBC,sotheecologicalpressure

transferredfromoutsidethestudyareaincreases,therebyincreasingthethreattoecologicalsecurityisdecidedbybothPFPIandCFPI

TheproductionandconsumptionfootprintsarebothwithintheBC,sothestudyareahaspotentialforadditionaldevelopment

TheconsumptionfootprintiswithintheBC,buttheproductionfootprintexceedsBC,sothethreattoecologicalsecurityisdecidedbythePFPI

EFCI≥0(EFp≥EFc)

T=PFPI

PFPI>CFPI>1

Veryrisky

1≥PFPI>CFPI

PFPI>1,CFPI<1

T<0.5verysafe0.5≤T<0.8safe

0.8≤T≤1.0notverysafeRisky

EFCI<0(EFpT=CFPI

CFPI>PFPI>1

Veryrisky

1≥CFPI>PFPI

CFPI>1,PFPI<1

T<0.5verysafe0.5≤T≤0.8safe

0.8≤T≤1.0notverysafeRisky

Theproductionandconsumptionfootprintsare

beyondtheBC,sothethreattoecologicalsecurityisdecidedbybothCFPIandPFPI

TheproductionandconsumptionfootprintsarebothwithintheBC,sothestudyareahasthepotentialforadditionaldevelopment

TheproductionfootprintiswithintheBC,butthe

consumptionfootprintisbeyondtheBC,sothethreattoecologicalsecurityisdecidedbyCFPI

Fig.2.Changesintheproductionfootprintandbiocapacity(BC)inthetypicalInnerMongoliansteppefrom2001to2010.

productivelandtypeofthesteppewasgrassland,andtheareasofothertypesofproductivelandonlychangedslightlyduringthisperiod.

TheEFpwashigherthantheBCfrom2001to2010(Fig.2),andthegapbetweenthemmeanstheproductionconsumedthelocalnaturalresourcesexcessivelyleadingtoecologicalovershoot.TheEFcwaslowerthantheBCfrom2001to2004,whichmeansresourcesusedandwastesproducedcanbeaffordedintherangeofthebiocapacityandtheregionisecologicallysecureandthereisthepotentialforadditionaldevelopment.However,theconsump-tionfootprintwashigherthantheBCthereafter,indicatingthatthetypicalsteppesareexperiencinganecologicaldeficitbecauseoftheirdemandforresourcesisnotmetbyasufficientlocalsupply,expressedbyBC.Sincethereislittleimportfromotherdistricts,ithastorelyontheoveruseoflocalresourceswithrespecttohigherlocaldemand.

4.2.ChangesinCFPI,PFPI,andEFCI

especiallyinXilinhotCity;thegrowthoftheproductionfootprintacceleratedaccordingly.ThegrowthrateofEFpofXilinhotCitywashigherthanthoseoftheotherareas,andaccountedfor38.5%ofthetotalproductionfootprintin2010.TheEFcincreasedto4.51timesits2001valueof0.62×106gha,reaching2.80×106ghain2010(Fig.3)asaresultofimprovementsintheregionalstandardofliving.BCchangedslightly,from1.16×106ghain2001to1.31×106ghain2010,becausethedominantbiologically

Fig.3.Changesintheconsumptionfootprintandbiocapacity(BC)inthetypicalInnerMongoliansteppefrom2001to2010.

Usingourcoupledevaluationmodelforecologicalsecurity,wecalculatedtheecologicalfootprintandBCforeachoftheregions,andusedtheresultingCFPI,PFPI,andEFCIvaluesfortotalstudyarea,AbagCounty,EastUjimqinCounty,WestUjimqinCounty,andXilinhotCitybasedontherelevantstatisticaldatafrom2001to2010.

Accordingtothecoupledmodel,ifbothPFPI>1andCFPI>1,theecologicalsecuritywasconsideredtobeveryrisky,whereasifCFPI<1andPFPI>1orCFPI>1whilePFPI<1,theecologicalsecu-ritywasconsideredtoberisky.Ourresultsshowedthatthetotalstudyareawasveryriskyfrom2005to2010andwasriskyfrom2001to2004(Fig.4a).AbagCountywasriskyuntil2009,andonly2010becameveryrisky(Fig.4b).EastUjimqinCountywasriskyfrom2001to2007and2009,andtheotheryearswasveryrisky(Fig.4c).WestUjimqinwasriskyfrom2001to2006andthereafterbecameveryrisky(Fig.4d).XilinhotCitywasveryriskythrough-outthestudyperiod(Fig.4e).Accordingtotheanalysisthechangesintheconsumptionfootprintandproductionfootprintofdifferentlandusetypesfrom2001to2010fortotalstudyareas(Fig.5aandb),wecanfindthattheriskmainlycomesfromgrazinglandintermsofproductionfootprint,sincethetypicalsteppecovers88%ofthetotalstudyarea,andthebiocapacityvariedfrom0.80×106ghato0.84×106gha,whichwasmuchlowerthantheproductionfoot-printrangingfrom1.38×106ghato1.96×106ghainthesameperiodfrom2001to2010;Regardingtheconsumptionfootprint,

X.Lietal./EcologicalIndicators39 (2014) 153–159

157

IPFC IdnCaF EIPFPIPFC IdnCaF EIPFPICFCI dnCaF EIPFPICFC IdnCaF EIPFPIPFC IdnCaF EIPFPFig.4.(a)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)intotalstudyarea.(b)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forAbagCounty.(c)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontri-butionindex(EFCI)forEastUjimqinCounty.(d)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forWestUjimqinCounty.(e)Changesintheproductionfootprintpressureindex(PFPI),consumptionfootprintpressureindex(CFCI),andecologicalfootprintcontributionindex(EFCI)forXilinhotCity.

theriskismainlyinducedbythecarbonuptakeland,whichraised14.8timesfrom0.14×106ghain2001to2.18×106ghain2010,becauseoftherequirementfortheenergyconsumption,whichleadtocarbondioxideemissionsduringthesocioeconomicdevelop-ment.

MostoftheEFCIvaluesweregreaterthan0,exceptforXilinhotCityfrom2002to2010,totalstudyareaandWestUjimqinCountyat2008,andEastUjimqinCountyat2010(Fig.4a–e).ThismeansthattheecologicalsecuritywasdeterminedprimarilybythePFPI,asa

Fig.5.(a)Changesintheproductionfootprintoflandusetypesfrom2001to2010fortotalstudyareas.(b)Changesintheconsumptionfootprintoflandusetypesfrom2001to2010fortotalstudyareas.

resultofincreasingPFPI,theecologicalpressuretransferredfromoutsidetheregionincreasedobviouslyandincreasinglythreatenedthelocalecologicalsecurity.EFCIshowedatrendofdecreaseinthestudyarea,whichmeansthatalthoughthethreattoecologi-calsecuritycameprimarilyfromtheproductionofresourcesbuttheinfluenceofexternalpressureonecologicalsecuritybeginstochangetointernalpressure.EFCIvalueswerelessthan0inXil-inhotCityafter2001,thismeansthattheecologicalsecuritywasdeterminedprimarilybytheCFPI.Thelocalconsumptionstructureshouldbeadjustedtoaddmoreinputresourcesfromoutsideandreducetheover-consumptionoflocalresourcesinordertoreduceCFPI,andthentheecologicaldeficit.

5.Discussion

MostofEFCIwaspositive,andPFPIorCFPIweregreaterthan1.Theseresultsindicatedthattheregion’secologicalsecuritywasthreatenedmorebyoutputtingelectricityandotherproductsthanbylocalconsumptionpressure.Thegrossnationalproduct(GNP)ofourstudyareainInnerMongoliaincreasedto7.77timesits2001valueof41.46×109RMB,reaching322.21×109RMBin2010.Thisrapiddevelopmentacceleratedtheproductionandconsumptionofresources,asaresult,theproductionfootprintincreasedto12.24timesits2001value,whichwasfasterthantheGNPgrowthrate.Inaddition,thedevelopmentwasachievedatthecostofexces-siveexploitationoftheregion’sresources.Basedonourmodelforevaluatingecologicalsecurity,theonlyeffectivewaytoreducethis

158X.Lietal./EcologicalIndicators39 (2014) 153–159

ecologicalpressureandimprovethelevelofecologicalsecuritywouldbetodecreasetheproductionfootprintorimprovetheBC.However,theBCchangedonlyslightlybecausemostofthelandusewaspasture,whichaccountedfor89%ofthetotallandarea;theotherland-useandcovertypeshadlittleimpactontheBC.Therefore,improvingthelevelofecologicalsecuritywillrequireareductionoftheproductionfootprintbymeansofmoreappropri-ateallocationofresources.Therefore,ecologicalprotectionofthesteppesshouldfocusonmoreefficientresourceallocation,therebymitigatingthethreattotheecologicalsecuritycausedbysocioeco-nomicdevelopmentandhelpingtoachievesustainableutilizationoftheregion’sresources.

TheEFmethodologyusesdataonenergyandresourcescon-sumption,wastegeneration(measuredascarbondioxide)toestimatethetotalecosystemarea(intermsofglobalaveragehectares–gha)(Kissingeretal.,2013),Whichrequiresaconsid-erationofbothconsumptionfootprintandproductionfootprint.Therearesixland-usetypesformeasuringtheEF,whichiscon-trastedwithfivedemandcategoriesofBC.Thereasonforthisdiscrepancyisthattwodemandcategories,forestproductsandcarbonsequestration,competeforthesamebiocapacitycategory:forestland(Boruckeetal.,2013).BothEFandBCusestandard-izedhectarestomeasurethedemandonnaturalcapitalversustheabilityofnaturalcapitaltomeetthedemand.Hence,thecomponentandaggregateareasarecommensurable(Monfredaetal.,2004).Onthisbasis,weintroducedthePFPI,CFPI,andEFCIparameterstoclarifytherootcausesofthethreatstoecologicalsecurity.Infutureresearch,theseindicesshouldbeexpandedsothatouranalysiscanaccountformoreofthefactorsthatdeterminemankind’secologicalfootprintanditsimpactsonthebiocapac-ity.

Becauseunifiedstatisticsandthedataofimportandexportwerenotavailableineachcounty’sstatisticalyearbooks,weadoptedcommonitemsinselectingtheconsumptionandproductionitemsthatformedthebasisofourcalculations.Thismeansthattheresultsforeachareacannotbefullycompared,butthatwecanstillusetherelativechangestocomparetheregions.Thus,ouranalysisprovidesausefulmeasureofthechangesinregionalecologicalsecurityovertime.Thecoupledassessmentmodelconsiderstherelationshipbetweenecologicalsecurityandlocalproductionandconsumptionpressures,andtherebyreflectsthepressureonthelocalenvironmentcreatedbytheproductionofresourcesaswellastheirconsumption.However,itwillbenecessarytofindwaystofurtherimprovetheecologicalsecurity.Thiswillbethesubjectofourfutureresearch.

Acknowledgments

TheresearchwasfundedbytheNationalNaturalScienceFundofChina(number:41030535),theNationalKeyBasicResearchProgramofChina(2014CB138803),theProgramforChangjiangScholarsandInnovativeResearchTeaminUni-versity(IRT1108),andtheInternationalCooperationProject(2013DFR30760).

References

Andersen,P.P.,Lorch,R.P.,1998.Foodsecurityandsustainableuseofnatural

resources:a2020vision.Ecol.Econ.26,1–10.

Bartel,A.,2000.Analysisoflandscapepattern:towardsa“top-down”indicatorfor

evaluationoflanduse.Ecol.Model.130,87–94.

Bonheur,N.,Lane,B.D.,2002.Naturalresourcesmanagementforhumansecurityin

Cambodia’sTonleSapBiosphereReserve.Environ.Sci.Pollut.5,33–41.

Bastianoni,S.,Niccolucci,V.,Pulselli,R.M.,Marchettini,N.,2012.Indicatorandindi-candum:“Sustainableway”vs“prevailingconditions”intheecologicalfootprint.Ecol.Indic.16,47–50.

Borucke,M.,Moore,D.,Cranston,G.,Gracey,K.,Iha,K.,Larson,J.,Lazarus,E.,Morales,

J.C.,Wackernagela,M.,Galli,A.,2013.Accountingfordemandandsupplyofthe

biosphere’sregenerativecapacity:TheNationalFootprintAccounts’underlyingmethodologyandframework.Ecol.Indic.24,518–533.

Chen,D.D.,Gao,W.S.,Chen,Y.Q.,Zhang,Q.,2010.Ecologicalfootprintanalysisof

foodconsumptionofruralresidentsinChinainthelatest30years.Agric.Agric.Sci.Procedia1,106–115.

Chen,K.P.,2004.Artificialneuralnetworksforriskdecisionsupportinnatural

hazards:acasestudyofassessingtheprobabilityofhousesurvivalfrombush-fires.Environ.Model.Assess.9(3),189–199.

Collins,A.,Flynn,A.,Wiedmann,T.,Barrett,J.,2006.Theenvironmentalimpactsof

consumptionatasubnationallevel–theecologicalfootprintofCardiff.J.Ind.Ecol.10(3),9–24.

Dai,F.Q.,Nan,L.,Liu,G.C.,2010.Assessmentofregionalecologicalsecurity

basedonecologicalfootprintandinfluentialfactorsanalysis:acasestudyofChongqingMunicipality,China.Int.J.Sustain.Dev.World.Ecol.17(5),390–400.

Duffy,S.B.,Michael,S.C.,Grant,W.E.,2001.Simulatingland-usedecisionsintheLa

AmistadBiosphereReservebufferzoneinCostaRicaandPanama.Ecol.Model.140,9–29.

Galli,A.,Kitzes,J.,Wermer,P.,Wackernagel,M.,Niccolucci,V.,Tiezzi,E.,2007.An

explorationofthemathematicsbehindtheecologicalfootprint.Int.J.Ecodyn.2(4),250–257.

Galli,A.,etal.,2012a.Assessingtheglobalenvironmentalconsequencesofeconomic

growththroughtheecologicalfootprint:afocusonChinaandIndia.Ecol.Indic.17,99–107.

Galli,A.,etal.,2012b.Integratingecological,carbonandwaterfootprintintoa“Foot-printFamily”ofindicators:definitionandroleintrackinghumanpressureontheplanet.Ecol.Indic.16,100–112.

Hodson,M.,Marvin,S.,2009.‘Urbanecologicalsecurity’:anewurbanparadigm?

Int.J.UrbanReg.Res.33(1),193–215.

Huang,Q.,Wang,R.H.,Ren,Z.Y.,Li,J.,Zhang,H.Z.,2007.Regionalecologicalsecu-rityassessmentbasedonlongperiodsofecologicalfootprintanalysis.Resour.Conserv.Recycl.51(1),24–41.

IPCC,2001.ClimateChange2001:TheScientificBasis.CambridgeUniversityPress,

IntergovernmentalPanelonClimateChange(IPCC),Cambridge,UK.

IPCC,2007.ClimateChange2007:theFourthAssessmentReport(AR4)oftheUnited

NationsIntergovernmentalPanelonClimateChange(IPCC).CambridgeUniver-sityPress,Cambridge,UK.

Kullenberg,G.,2002.Regionalco-developmentandsecurity:acomprehensive

approach.OceanCoast.Manage.45,761–776.

Kissinger,M.,Sussman,C.,Moore,J.,Rees,W.E.,2013.Accountingfortheecological

footprintofmaterialsinconsumergoodsattheurbanscale.Sustainability5,1960–1973.

Lenzen,M.,Murray,S.A.,2001.Amodifiedecologicalfootprintmethodanditsappli-cationtoAustralia.Ecol.Econ.37,229–255.

Li,Z.C.,He,J.H.,2011.Regionalecologicalsecurityassessmentbasedon

improvedmethodofecologicalfootprint–thecaseofShandongChangDaoCounty.In:Proc.2011Int.Symp.EconTransit.DevForeign-fundedEnter,pp.8–14.

Liu,X.T.,Sheng,Z.F.,Wang,Y.L.,2011.Studyontourismecologicalfootprintof

LoudiCityinHunan“3+5”urbanagglomeration.Appl.Mech.Mater.55–57,1566–1571.

Li,X.,2013.AnresearchonregionaldifferencesofChina’scarbondioxideemissions-basedontheIPCCcarbonemissionsaccountingmethod.Territ.Nat.Resour.Study2,63–65.

Lundquist,J.E.,2002.UseofFouriertransformstodefinelandscapescalesofanalysis

fordisturbances:acasestudyofthinnedandunthinedforeststands.Landsc.Ecol.17(5),445–454.

Monfreda,C.,Wackernagel,M.,Deumling,D.,2004.Establishingnationalnatural

capitalaccountsbasedondetailedecologicalfootprintandbiologicalcapacityassessments.LandUsePolicy21(3),231–246.

Onkal-Engin,G.,Guleda,D.,Ibrahim,H.H.,2004.Assessmentofurbanairqualityin

Istanbulusingfuzzysyntheticevaluation.Atmos.Environ.38,3809–3815.

Qing,Z.S.,Wu,S.H.,Zhao,D.S.,Dai,E.F.,2013.Temporal-spatialchangesininner

mongoliangrasslanddegradationduringpastthreedecades.Agric.Sci.Technol.14(4),676–683.

Senbel,M.,McDaniels,T.,Dowlatabadi,H.,2003.Theecologicalfootprint:anon-monetarymetricofhumanconsumptionappliedtoNorthAmerica.Glob.Environ.Change13(2),83–100.

Stoglehner,G.,2003.Ecologicalfootprint–atoolforassessingsustainableenergy

supplies.J.Clean.Prod.11(3),267–277.

Tong,C.,2000.Reviewonenvironmentalindicatorresearch.Res.Environ.Sci.13(4),

53–55(inChinesewithEnglishabstract).

Venetoulis,J.,Talberth,J.,2008.Refiningtheecologicalfootprint.Environ.Dev.Sus-tain.10(4),441–469.

Wackernagel,M.,1998.Theecologicalfootprint:anindicatorofprogresstoward

regionalsustainability.Environ.Model.Assess.51(1),511–529.

Wackernagel,M.,Kitzes,J.,Moran,D.,Goldfinger,S.,Thomas,M.,2006.Theecological

footprintofcitiesandregions:comparingresourceavailabilitywithresourcedemand.Environ.Urban18(1),103–112.

Wackernagel,M.,Monfreda,C.,Erb,K.H.,Haberl,H.,Schulz,N.B.,2004.Ecological

footprinttimeseriesofAustria,thePhilippines,andSouthKoreafor1961–1999:comparingtheconventionalapproachtoan‘actuallandarea’approach.LandUsePolicy21(3),261–269.

Wackernagel,M.,Onisto,L.,Bello,P.,Linares,A.C.,Falfán,I.S.L.,García,J.M.,Guer-rero,A.I.S.,Guerrero,M.G.S.,1999.Nationalnaturalcapitalaccountingwiththeecologicalfootprintconcept.Ecol.Econ.29(3),375–390.

X.Lietal./EcologicalIndicators39 (2014) 153–159

159

Wackernagel,M.,Rees,W.E.,1996.OurEcologicalFootprint:ReducingHuman

ImpactontheEarth.NewSocietyPublishers,GabriolaIsland,BritishColumbia.

Xu,Z.M.,Zhang,Z.Q.,Cheng,G.D.,Chen,D.J.,2003.Ecologicalfootprintcalculation

anddevelopmentcapacityanalysisofChinain1999.Chin.J.Appl.Ecol.14(2),280–285(inChinesewithEnglishabstract).

Zhang,X.S.,Gao,Q.,Yang,D.A.,Zhou,G.S.,Ni,J.,Wang,Q.,1997.Agradientanalysis

andpredictiononthenortheastChinatransect(NECT)forglobalchangestudy.ActaBot.Sin.39(9),785–799(inChinesewithEnglishabstract).

Zhu,L.,Qin,F.C.,2008.Forecastofsoilandwaterlossinopencastcoalmine-basedon

No.1coalmineinShengliDiggingsofInnerMongolia.Bull.SoilWaterConserv.28(4),111–115(inChinesewithEnglishabstract).

因篇幅问题不能全部显示,请点此查看更多更全内容