您的当前位置:首页正文

Euclidean formulation of general relativity

2021-05-25 来源:客趣旅游网
Euclideanformulationofgeneralrelativity

arXiv:physics/0406026v1 [physics.gen-ph] 7 Jun 2004J.B.Almeida

UniversidadedoMinho,DepartamentodeF´isica,

4710-057Braga,Portugal.E-mail:bda@fisica.uminho.pt

Avariationalprincipleisappliedto4DEuclideanspaceprovidedwithatensor

refractiveindex,definingwhatcanbeseenas4-dimensionaloptics(4DO).Thege-ometryofsuchspaceisanalysed,makingnophysicalassumptionsofanykind.How-ever,byassigninggeometricentitiestophysicalquantitiesthepaperallowsphysicalpredictionstobemade.Amechanismisproposedfortranslationbetween4DOandGR,whichinvolvesthenullsubspaceof5Dspacewithsignature(−++++).

Atensorequationrelatingtherefractiveindextosourcesisestablishedgeometri-callyandthesourcestensorisshowntohavecloserelationshiptothestresstensorofGR.ThisequationissolvedforthespecialcaseofzerosourcesbutthesolutionthatisfoundisonlyapplicabletoNewtonmechanicsandisinadequateforsuchpredictionsaslightbendingandperiheliumadvance.Itisthenarguedthattestinggravityinthephysicalworldinvolvestheuseofatestchargewhichisitselfasource.Solvingthenewequation,withconsiderationofthetestparticle’sinertialmass,producesanexponentialrefractiveindexwheretheNewtonianpotentialappearsinexponentandprovidesaccuratepredictions.ResortingtohypersphericalcoordinatesitbecomespossibletoshowthattheUniverse’sexpansionhasapurelygeometricexplanationwithoutappealtodarkmatter.

1Introduction

Accordingtogeneralconsensusanyphysicstheoryisbasedonasetofprinciplesuponwhichpredictionsaremadeusingestablishedmathematicalderivations;thevalidityofsuchtheorydependsonagreementbetweenpredictionsandobservedphysicalreality.Inthatsensethispaperdoesnotformulateaphysicaltheorybecauseitdoesnotpresumeanyphysicalprinciples;forinstanceitdoesnotassumespeedoflightconstancyorequivalencebetweenframeaccelerationandgravity.Thisisapaperaboutgeometry.Allalongthepaper,inseveraloccasions,aparallelismadewiththephysicalworldbyassigningaphysicalmeaningtogeometricentitiesandthisallowspredictionstobemade.Howeverthevalidityofderivationsandoverallconsistencyoftheexpositionisindependentofpredictioncorrectness.

Theonlypostulatesinthispaperareofageometricalnatureandcanbecondensedinthedefinitionofthespacewearegoingtoworkwith:4-dimensionalspacewithEuclideansignature(++++).Forthesolepurposeofmakingtransitionstospacetimewewillalsoconsiderthenullsubspaceofthe5-dimensionalspacewithsignature(−++++).Thischoiceofspacedoesnotimplyanyassumptionaboutitsphysicalmeaninguptothepointwheregeometric

1

EuclideanformulationofgeneralrelativityJ.B.Almeida

Table1:Normalisingfactorsfornon-dimensionalunitsusedinthetext;󰀁→Planckconstant

dividedby2π,G→gravitationalconstant,c→speedoflightande→protoncharge.

LengthG󰀁

󰀉

Mass󰀁c

c5

e

entitieslikecoordinatesandgeodesicsstartbeingassignedtophysicalquantitieslikedistancesandtrajectories.Someofthoseassignmentswillbemadeveryearlyintheexpositionandwillbekeptconsistentlyuntiltheendinordertoallowthereadersomeassessmentoftheproposedgeometricmodelasatoolforthepredictionofphysicalphenomena.Mappingbetweengeometryandphysicsisfacilitatedifonechoosestoworkalwayswithnon-dimensionalquantities;thisiseasilydonewithasuitablechoiceforstandardsofthefundamentalunits.Inthisworkallproblemsofdimensionalhomogeneityareavoidedthroughtheuseofnormalisingfactorsforallunits,listedinTable1,definedwithrecoursetothefundamentalconstants:Planckconstant,gravitationalconstant,speedoflightandprotoncharge.Thisnormalisationdefinesasystemofnon-dimensionalunitswithimportantconsequences,namely:1)allthefundamentalconstants,󰀁,G,c,e,becomeunity;2)aparticle’sComptonfrequency,definedbyν=mc2/󰀁,becomesequaltotheparticle’smass;3)thefrequenttermGM/(c2r)issimplifiedtoM/r.

Theparticularspacewechosetoworkwithcanhaveamazingstructure,providingcountlessparallelstothephysicalworld;thispaperisjustalimitedintroductorylookatsuchstructureandparallels.Theexpositionmakesfulluseofanextraordinaryandlittleknownmathematicaltoolcalledgeometricalgebra(GA),a.k.a.Cliffordalgebra,whichreceivedanimportantthrustwiththeintroductionofgeometriccalculusbyDavidHestenes[1].AgoodintroductiontoGAcanbefoundinGulletal.[2]andthefollowingparagraphsusebasicallythenotationandconventionstherein.AcompletecourseonphysicalapplicationsofGAcanbedownloadedfromtheinternet[3]withamorecomprehensiveversionpublishedrecentlyinbookform[4]whileanaccessiblepresentationofmechanicsinGAformalismisprovidedbyHestenes[5].

2Introductiontogeometricalgebra

WewilluseGreekcharactersfortheindicesthatspan1to4andLatincharactersforthosethatexcludethe4value;inrarecaseswewillhavetouseindicesspanning0to3andthesewillbedenotedwithGreekcharacterswithanoverbar.Thegeometricalgebraofthehyperbolic5-dimensionalspacewewanttoconsiderG4,1isgeneratedbytheframeoforthonormalvectors{i,σµ},µ=1...4,verifyingtherelations

i2=−1,

iσµ+σµi=0,

σµσν+σνσµ=2δµν.

(1)

Wewillsimplifythenotationforbasisvectorproductsusingmultipleindices,i.e.σµσν≡σµν.Thealgebrais32-dimensionalandisspannedbythebasis

1,{i,σµ},{iσµ,σµν},{iσµν,σµνλ},{iI,σµI},I;

1scalar5vectors10bivectors10trivectors5tetravectors1pentavector

(2)

whereI≡iσ1σ2σ3σ4isalsocalledthepseudoscalarunit.Severalelementsofthisbasissquaretounity:

(σµ)2=1,(iσµ)2=1,(iσµν)2=1,(iI)2=1;(3)

2

Euclideanformulationofgeneralrelativityandtheremainingsquareto−1:

i2=−1,

(σµν)2=−1,

(σµνλ)2=−1,

(σµI)2,

I2=−1.

J.B.Almeida

(4)

Notethatthesymboliisusedheretorepresentavectorwithnorm−1andmustnotbeconfusedwiththescalarimaginary,whichwedon’tusuallyneed.

Thegeometricproductofanytwovectorsa=a0i+aµσµandb=b0i+bνσνcanbedecomposedintoasymmetricpart,ascalarcalledtheinnerproduct,andananti-symmetricpart,abivectorcalledtheexteriorproduct.

ab=a·b+a∧b,

ba=a·b−a∧b.

(5)

Reversingthedefinitiononecanwriteinternalandexteriorproductsas

a·b=

1

2

(ab−ba).

(6)

Whenavectorisoperatedwithamultivectortheinnerproductreducesthegradeofeachelementbyoneunitandtheouterproductincreasesthegradebyone.Therearetwoexceptions;whenoperatedwithascalartheinnerproductdoesnotproducegrade−1butgrade1instead,andtheouterproductwithapseudoscalarisdisallowed.

3Displacementandvelocity

Anydisplacementinthe5-dimensionalhyperbolicspacecanbedefinedbythedisplacementvector

ds=idx0+σµdxµ;(7)andthenullspaceconditionimpliesthatdshaszerolength

ds2=ds·ds=0;

whichiseasilyseenequivalenttoeitheroftherelations

󰀆󰀆02µ24202(dx)=(dx);(dx)=(dx)−(dxj)2.

(8)

(9)

Theseequationsdefinethemetricsoftwoalternativespaces,oneEuclideantheotherone

Minkowskian,bothequivalenttothenull5-dimensionalsubspace.

ApathonnullspacedoesnothaveanyaffineparameterbutwecanuseEqs.(9)toexpress4coordinatesintermsofthefifthone.Wewillfrequentlyusetheletterttorefertocoordinatex0andtheletterτforcoordinatex4;totalderivativeswithrespecttotwillbedenotedbyan

ˇ.Dividingoverdotwhiletotalderivativeswithrespecttoτwillbedenotedbya”check”,asinF

bothmembersofEq.(7)bydtweget

s˙=i+σµx˙µ=i+v.

(10)

Thisisthedefinitionforthevelocityvectorv;itisimportanttostressagainthatthevelocity

vectordefinedhereisageometricalentitywhichbearsforthemomentnorelationtophysicalvelocity,beitrelativisticornot.Thevelocityhasunitnormbecauses˙2=0;evaluationofv·vyieldstherelation󰀆

v·v=(x˙µ)2=1.(11)

3

EuclideanformulationofgeneralrelativityJ.B.Almeida

Thevelocityvectorcanbeobtainedbyasuitablerotationofanyoftheσµframevectors,inparticularitcanalwaysbeexpressedasarotationoftheσ4vector.

Atthispointwearegoingtomakeasmalldetourforthefirstparallelwithphysics.Inthepreviousequationwereplacex0bythegreekletterτandrewritewithτ˙2inthefirstmember

󰀆

2τ˙=1−(x˙j)2.(12)Therelationaboveiswellknowninspecialrelativity,seeforinstanceMartin[6];seealsoAlmeida

[7],Montanus[8]forparallelsbetweenspecialrelativityanditsEuclideanspacecounterpart.1WenotethattheoperationperformedbetweenEqs.(11)and(12)isaperfectlylegitimatealgebraicoperationsincealltheelementsinvolvedarepurenumbers.ObviouslywecouldalsodividebothmembersofEq.(7)bydτ,whichisthenassociatedwithrelativisticpropertime;

sˇ=iˇx0+σjxˇj+σ4.

(13)

󰀁j2

Squaringthesecondmemberandnotingthatitmustbenullweobtain(ˇx0)2−(ˇx)=1.This

0j

meansthatwecanrelatethevectoriˇx+σjxˇtorelativistic4-velocity,althoughthenormofthisvectorissymmetrictowhatisusualinSR.Therelativistic4-velocityismoreconvenientlyassignedtothe5Dbivectoriσ4xˇ0+σj4xˇj,whichhasthenecessaryproperties.Themethodwehaveusedtomakethetransitionbetween4DEuclideanspaceandhyperbolicspacetimeinvolvedthetransformationofa5Dvectorintoscalarplusbivectorthroughproductwithσ4;thismethodwilllaterbeextendedtocurvedspaces.

Equation(10)appliestoflatspacebutcanbegeneralisedforcurvedspace;wedothisintwosteps.Firstofallwecanincludeascalefactor(v=nσµx˙µ),whichcanchangefrompointtopoint

s˙=i+nσµx˙µ.(14)Inthiswayweareintroducingthe4-dimensionalanalogueofarefractiveindex,thatcanbeseen

asageneralisationofthe3-dimensionaldefinitionofrefractiveindexforanopticalmedium:thequotientbetweenthespeedoflightinvacuumandthespeedoflightinthatmedium.Thescalefactornusedhererelatesthenormofvectorσµx˙µtounityandsoitdeservesthedesignationof4-dimensionalrefractiveindex;wewilldropthe”4-dimensional”qualificationbecausetheconfusionwiththe3-dimensionalcasecanalwaysberesolvedeasily.Thematerialpresentedinthispaperis,inmanyrespects,alogicalgeneralisationofopticsto4-dimensionalspace;so,evenifthepaperisonlyaboutgeometry,itbecomesnaturaltodesignatethisstudyas4-dimensionaloptics(4DO).

FullgeneralisationofEq.(10)impliestheconsiderationofatensorrefractiveindex,similartothenon-isotropicrefractiveindexofopticalmedia

s˙=i+nµνx˙νσµ;

(15)

thevelocityisthengenerallydefinedbyv=nµνx˙νσµ.Thesameexpressioncanbeusedwith

anyorthonormalframe,includingforinstancesphericalcoordinates,butforthemomentwewillrestrictourattentiontothosecaseswheretheframedoesnotrotateinadisplacement;thisposesnorestrictionontheproblemstobeaddressedbutisobviouslyinconvenientwhensymmetriesareinvolved.Equation(15)canbewrittenwiththevelocityintheformv=gνx˙νifwedefinetherefractiveindexvectors

gν=nµνσµ.(16)

EuclideanformulationofgeneralrelativityJ.B.Almeida

Thesetoffourgµvectorswillbedesignatedtherefractiveindexframe.ObviouslythevelocityisstillaunitaryvectorandwecanexpressthisfactevaluatingtheinternalproductwithitselfandnotingthatthesecondmemberinEq.(15)haszeronorm.

v·v=nαµx˙µnβνx˙νδαβ=1.

(17)

UsingEq.(16)wecanrewritetheequationaboveasgµ·gνx˙µx˙ν=1anddenotingbygµνthe

scalargµ·gνtheequationbecomes

gµνx˙µx˙ν=1.(18)ThegeneralisedformofthedisplacementvectorarisesfrommultiplyingEq.(15)bydt,using

thedefinition(16)

ds=idt+gµdxµ.(19)Thiscanbeputintheformofaspacemetricbydottingwithitselfandnotingthatthefirst

membervanishes

(dt)2=gµνdxµdxν.(20)Noticethatthecoordinatesarestillreferredtothefixedframevectorsσµandnottotherefractive

indexvectorsgµ.InGRthereisnosuchdistinctionbetweentwoframesbutMontanus[8]clearlyseparatestheframefromtensorgµν.

Wearegoingtoneedthereciprocalframe[4]{−i,gµ}suchthat

gµ·gν=δµν.

(21)

Fromthedefinitionitbecomesobviousthatgµgν=gµ·gν+gµ∧gνisapurebivectorandsogµgν=−gνgµ.WenowmultiplyEq.(19)ontherightandontheleftbyg4,simultaneouslyreplacingx4byτtoobtain

dsg4=ig4dt+gjg4dxj+dτ;

g4ds=g4idt+g4gjdxj+dτ.

(22)

Whentheinternalproductisperformedbetweenthetwoequationsmembertomemberthefirstmembervanishesandthesecondmemberproducestheresult

󰀅󰀇

(dτ)2=g44(dt)2−gjkdxjdxk.(23)Ifthevariousgµarefunctionsonlyofxjtheequationisequivalenttoametricdefinitionin

generalrelativity.Wewillexaminethespecialcasewhengµ=nµσµ;replacinginEq.(23)

(dτ)2=

1

n4

dxj

󰀄2

.

(24)

Thisequationcoversalargenumberofsituationsingeneralrelativity,includingtheveryimpor-tantSchwarzschild’smetric,aswasshowninAlmeida[9]andwillbediscussedbelow.NoticethatEq.(20)hasmoreinformationthanEq.(23)becausethestructureofg4iskeptintheformer,throughthecoefficientsgµ4,butismostlylostintheg44coefficientofthelatter.

4Thesourcesofspacecurvature

Equations(20)and(23)definetwoalternative4-dimensionalspaces;intheformer,4DO,tisanaffineparameterwhileinthelatter,GR,itisτthattakessuchrole.Thegeodesicsofonespacecanbemappedonetoonewiththoseoftheotherandwecanchoosetoworkonthespacethatbestsuitsus.

5

Euclideanformulationofgeneralrelativity

Thegeodesicsof4DOspacecanbefoundbyconsiderationoftheLagrangian

L=

gµνx˙µx˙ν

2.

J.B.Almeida

(25)

ThejustificationforthischoiceofLagrangiancanbefoundinseveralreferencebooksbutsee

forinstanceMartin[6].FromtheLagrangianonedefinesimmediatelytheconjugatemomenta

vµ=

∂L

Euclideanformulationofgeneralrelativity

VectorTiscalledthesourcesvectorandcanbeexpandedintosixteentermsas

T=Tµνσµx˙ν=(󰀁2nµν)σµx˙ν.

J.B.Almeida

(32)

ThetensorTµνcontainsthecoefficientsofthesourcesvectorandwecallitthesourcestensor;

itisverysimilartothestresstensorofGR,althoughitsrelationtogeometryisdifferent.Thesourcestensorinfluencestheshapeofgeodesicsbutweshallnotexamineherehowsuchinfluencearises,exceptforveryspecialcases.

BeforewebeginsearchingsolutionsforEq.(31)wewillshowthatthisequationcanbede-composedintoasetofequationssimilartoMaxwell’s.Considerfirstthevelocityderivative󰀁v=󰀁·v+󰀁∧v;theresultisamultivectorwithscalarandbivectorpartG=󰀁v.Nowderiveagain󰀁G=󰀁·G+󰀁∧G;weknowthattheexteriorderivativeofGvanishesandthedivergenceequalsthesourcesvector.Maxwell’sequationscanbewritteninasimilarform,aswasshowninAlmeida[10],withvelocityreplacedbythevectorpotentialandmultivectorGreplacedbytheFaradaybivectorF;DoranandLasenby[4]offersimilarformulationforspacetime.

Anisotropicspacemustbecharacterisedbyorthogonalrefractiveindexvectorsgµwhosenormcanchangewithcoordinatesbutisthesameforallvectors.Weusuallyrelaxthisconditionbyacceptingthatthethreegjmusthaveequalnormbutg4canbedifferent.Thereasonforthisrelaxedisotropyisfoundintheparallelusuallymadewithphysicsbyassigningdimensions1to3tophysicalspace.Isotropyinaphysicalsenseneedonlybeconcernedwiththesedimensionsandignoreswhathappenswithdimension4.Wewillthereforecharacteriseanisotropicspacebytherefractiveindexframegj=nrσj,g4=n4σ4.Indeedwecouldalsoacceptanon-orthogonalg4withintherelaxedisotropyconceptbutwewillnotdosointhiswork.

Wewillonlyinvestigatesphericallysymmetricsolutionsindependentofx4;thismeansthattherefractiveindexcanbeexpressedasfunctionsofrinsphericalcoordinates.Thevectorderivativeinsphericalcoordinatesisofcourse

󰀁=

1

rσθ∂θ+

1

n4

σ4∂4.

(33)

TheLaplacianistheinnerproductof󰀁withitselfbuttheframederivativesmustbeconsidered

∂rσr=0,∂rσθ=0,∂rσϕ=0,

∂θσr=σθ,∂θσθ=−σr,∂θσϕ=0,

∂ϕσr=sinθσϕ,

∂ϕσθ=cosθσϕ,

∂ϕσϕ=−sinθσr−cosθσθ.cotθ

r2

󰀄

1

(34)

AfterevaluationtheLaplacianbecomes

󰀁2=

1

r∂r−

n′r

r2

∂θθ+

∂ϕϕ

+

r

2

(n′r)

r

d+

a

EuclideanformulationofgeneralrelativityJ.B.Almeida

Whenappliedton4andequatedtozeroweobtainsolutionswhichimposen4=nrandsothespacemustbetrulyisotropicandnotrelaxedisotropicaswehadallowed.ThesolutionwehavefoundfortherefractiveindexcomponentsinisotropicspacecancorrectlymodelNewtondynamics,whichledtheauthortoadheretoitforsometime[11].HoweverifinsertedintoEq.(24)thissolutionproducesaGRmetricwhichisverifiablyindisagreementwithobservations;consequentlyithaspurelygeometricsignificance.

Theinadequacyoftheisotropicsolutionfoundaboveforrelativisticpredictionsdeservessomethought,sothatwecansearchforsolutionsguidedbytheresultsthatareexpectedtohavephysicalsignificance.Inthephysicalworldweareneverinasituationofzerosourcesbecausetheshapeofspaceortheexistenceofarefractiveindexmustalwaysbetestedwithatestparticle.Atestparticleisanabstractioncorrespondingtoapointmassconsideredsosmallastohavenoinfluenceontheshapeofspace.Butinrealityatestparticleisalwaysasourceofrefractiveindexanditsinfluenceontheshapeofspacemaynotbenegligibleinanycircumstances.Ifthisisthecasethesolutionsforvanishingsourcesvectormayhaveonlygeometricmeaning,withnoconnectiontophysicalreality.

ThequestionisthenhowdoweincludethetestparticleinEq.(31)inordertofindphysicallymeaningfulsolutions.Herewewillmakeoneaddhocproposalwithoutfurtherjustificationbe-causetheauthorhasnotyetcompletedtheworkthatwillprovidesuchjustificationingeometricterms.ThesecondmemberofEq.(31)willnotbezeroandwewillimposethesourcesvector

J=−∇2n4σ4.

Equation(31)becomes

󰀁2v=−∇2n4σ4;

(38)(39)

asaresulttheequationfornrremainsunchangedbuttheequationforn4becomes

n4+

′′

2n′4

nr

=−n4+

′′

2n′4

nr.Thiscannowbeen-teredintoEq.(24)andthecoefficientscanbeexpandedinseriesandcomparedtoSchwarzschild’s

forthedeterminationofparametera.Thefinalsolution,forastationarymassMis

nr=e2M/r,

n4=eM/r.

(41)

Equation(39)canbeinterpretedinphysicaltermsascontainingtheessenceofgravitation.Whensolvedforsphericallysymmetricsolutions,aswehavedone,thefirstmemberprovidesthedefinitionofastationarygravitationalmassasthefactorMappearingintheexponentandthesecondmemberdefinesinertialmassas∇2n4.Gravitationalmassisdefinedwithrecoursetosomeparticlewhichundergoesitsinfluenceandisanimatedwithvelocityvandinertialmasscannotbedefinedwithoutsomefieldn4actinguponit.Completeinvestigationofthesourcestensorelementsandtheirrelationtophysicalquantitiesisnotyetdone.Itisbelievedthatthe16termsofthistensorhavestronglinkswithhomologouselementsofstresstensorinGRbutthiswillhavetobeverified.

Finallyweturnourattentiontohypersphericalcoordinates.Thepositionvectorisquitesimplyx=τστ,wherethecoordinateisthedistancetothehyperspherecentre.Differentiatingthepositionvectorweobtainthedisplacementvector,whichisanaturalgeneralisationof3Dsphericalcoordinatescase

dx=στdτ+τσρdρ+τsinρσθdθ+τsinρsinθσϕdϕ;

(42)

8

EuclideanformulationofgeneralrelativityJ.B.Almeida

ρ,θandϕareangles.Thevelocityinanisotropicmediumshouldnowbewrittenas

˙+sinρsinθσϕϕ˙).v=n4σττ˙+nrτ(σρρ˙+sinρσθθ

(43)

Inordertoreplacetheangularcoordinateρwithadistancecoordinaterwecanmaker=τρ

andderivewithrespecttotime

r˙=ρτ˙+τρ˙=

r

τ

˙+rsinθσϕϕ˙).˙+nr(σrr˙+rσθθσrτ

󰀂

(45)

wehavealsoreplacedσρbyσrforconsistencywiththenewcoordinates.

Wehavejustdefinedaparticularlyimportantsetofcoordinates,whichappearstobeespeciallywelladaptedtodescribethephysicalUniverse,withτbeinginterpretedastheUniverse’sageoritsradius;notethattimeanddistancecannotbedistinguishedinnon-dimensionalunits.Whenrτ/τ˙issmallinEq.(45),therefractiveindexvectorsbecomeorthogonalandweusen4andnrinconjunctionwithEq.(24)toobtainaGRmetricwhosecoefficientsareequivalentsoSchwarzschild’sonthefirsttermsoftheirseriesexpansions.Whenrτ˙/τcannotbeneglected,however,theequationcanexplaintheUniverse’sexpansionandflatrotationcurvesingalaxieswithoutdarkmatterintervention.AmorecompletediscussionofthissubjectcanbefoundinRef.[9].

5Conclusions

EuclideanandMinkowskian4-spacescanbeformallylinkedthroughthenullsubspaceof5-dimensionalspacewithsignature(−++++).Theextensionofsuchformalismtonon-flatspacesallowsthetransitionbetweenspaceswithbothsignaturesandthepaperdiscussessomeconditionsformetricandgeodesictranslation.Foritssimilaritieswithoptics,thegeometryof4-spaceswithEuclideansignatureiscalled4-dimensionaloptics(4DO).Usingonlygeometricargumentsitispossibletodefinesuchconceptsasvelocityandtrajectoryin4DOwhichbecomephysicalconceptswhenproperandnaturalassignmentsaremade.

Oneimportantpointwhichisaddressedforthefirsttimeintheauthor’sworkisthelinkbetweentheshapeofspaceandthesourcesofcurvature.Thisisdoneongeometricalgroundsbutitisalsoplacedinthecontextofphysics.TheequationpertainingtothetestofgravitybyatestparticleisproposedandsolvedforthesphericallysymmetriccaseprovidingasolutionequivalenttoSchwarzschild’sasfirstapproximation.SomementionismadeofhypersphericalcoordinatesandthereaderisreferredtopreviousworklinkingthisgeometrytotheUniverse’sexpansionintheabsenceofdarkmatter.

References

[1]D.HestenesandG.Sobczyk,CliffordAlgebrastoGeometricCalculus.AUnifiedLanguage

forMathematicsandPhysics,FundamentalTheoriesofPhysics(Reidel,Dordrecht,1989).[2]S.Gull,A.Lasenby,andC.Doran,Imaginarynumbersarenotreal.—

Thegeometricalgebraofspacetime,Found.Phys.23,1175,1993,URLhttp://www.mrao.cam.ac.uk/~clifford/publications/abstracts/imag_numbs.html.

9

EuclideanformulationofgeneralrelativityJ.B.Almeida

hand-URL

[3]A.LasenbyandC.Doran,Physicalapplicationsofgeometricalgebra,

outcollectionfromaCambridgeUniversitylecturecourse,1999,http://www.mrao.cam.ac.uk/~clifford/ptIIIcourse/course99/.

[4]C.DoranandA.Lasenby,GeometricAlgebraforPhysicists(CambridgeUniversityPress,

Cambridge,U.K.,2003).[5]D.Hestenes,NewFoundationsforClassicalMechanics(KluwerAcademicPublishers,Dor-drecht,TheNetherlands,2003),2nded.[6]J.L.Martin,GeneralRelativity:AGuidetoitsConsequencesforGravityandCosmology

(EllisHorwoodLtd.,U.K.,1988).[7]J.B.Almeida,K-calculusin4-dimensionaloptics,2002,physics/0201002.

[8]J.M.C.Montanus,Proper-timeformulationofrelativisticdynamics,Found.Phys.31,1357,

2001.[9]J.B.Almeida,Anhyperspheremodeloftheuniverse–Thedismissalofdarkmatter,2004,

physics/0402075.[10]J.B.Almeida,Maxwell’s

physics/0403058.

equations

in

4-dimensional

Euclidean

space,

2004,

[11]J.B.Almeida,4-dimensionaloptics,analternativetorelativity,2001,gr-qc/0107083.

10

因篇幅问题不能全部显示,请点此查看更多更全内容