Earningsforecastdisclosureregulationandearningsmanagement:evidencefromTaiwanIPOfirms
BikkiJaggi*·Chen-lungChin·
Hsiou-weiWilliamLin·PichengLee
C
SpringerScience+BusinessMedia,Inc.2006
AbstractThisstudyexamineswhethertheTaiwaneseregulationrequiringdisclosureofearningsforecastsintheIPOsresultedindisclosureofmoreoptimisticearningsforecastsandwhethertheforecasterrorwasreducedmorebymanipulatingthereportedearningsratherthanrevisingtheearningsforecaststomeettheforecasterrorthreshold.Thestudyisbasedon759forecastsissuedbytheTaiwaneseIPOfirmsfrom1994to2001,i.e.8-yearperiodaftertheregulationwasmodifiedtoincreasetheforecasterrorthresholdto20%.
Thefindingsshowthatthedisclosureregulationresultedinmoreoptimisticforecaststhanconservativeforecasts,especiallyforfirmsexpectingbetterperformanceintheforecastyearcomparedtothepreviousyear.Firmsdisclosingoptimisticearningsforecastsengagedmoreinmanipulationofreportedearningsthanrevisionofforecaststomeettheforecasterrorthreshold.Thesefindingsthussuggestthatthedisclosureregulationresultedinearningsmanipulation,whichreducedthequalityofreportedearnings.
B.Jaggi()
FacultyofManagementSchoolofBusiness,RutgersUniversity,NewBrunswickPiscataway,NJ08854Tel:(732)445-3539
e-mail:jaggi@rbsmail.rutgers.edu
C.-L.Chin
DepartmentofAccounting,NationalChengChiUniversity,Taipei,Taiwan
H.-W.W.Lin
DepartmentandGraduateInstituteofInternationalBusiness,NationalTaiwanUniversity,Taipei,Taiwain
P.Lee
DepartmentofAccounting,LubinSchoolofBusiness,PaceUniversity,NewYork,NY10038*Wereceivedvaluablecommentsatthe2003AmericanAccountingAssociationand2004EuorpeanAccountingAssociationannualmeetings.WealsothanktheparticipantsattheresearchseminarsatRutgersUniversity,CityUniversityofHongKong,andPaceUniversity,fortheirinsightfulcomments.PichengLeeespeciallythanksPaceUniversityfor2003summerresearchgrant.
Springer
276RevQuantFinanAcc(2006)26:275–299
KeywordsEarningsmanagement.Disclosureregulation.Discretionaryaccruals.Mandatoryearningsforecasts.Forecasterrorthreshold
1.Introduction
In1991,theTaiwanSecuritiesandFuturesExchangeCommission(TSFEC)issuedaregu-lationrequiringtheIPOfirmstoincludeannualearningsforecastsintheIPOprospectusesandalsodiscloseforecastsfortwoyearssubsequenttotheissuanceofIPO.1Theunderlyingobjectiveofthisregulationhasbeentoreduceasymmetryofinformationamonginsidersandinvestorsatlargebydisseminatingforecastinformationtoallpotentialinvestorsonafairandequitablebasis,2sothattheusefulnessofearningsinformationforinvestmentdecisionscouldbeenhanced.Theregulationalsosetsaforecasterrorthresholdandincludesaprovisionthatallowsthefirmstorevisetheforecasts,apparentlytodiscouragethemtomanipulatethereportedearningsformeetingtheforecasterrorthreshold.Theregulation’sintentionthusappearstoreducetheasymmetryofinformationwithoutloweringtheinformationqualityofreportedearningsthroughmanipulation.
ThisstudyempiricallytestswhetherthedisclosureregulationencouragedTaiwanfirmstoissuemoreoptimisticforecastsandwhethertheforecasterrorofoptimisticforecastswasreducedbymanipulatingthereportingearningsusingpositivediscretionaryaccru-alsratherthanrevisingtheearningsforecastsdownward,asallowedbytheregulations.WeargueinthispaperthatthedisclosurerequirementismorelikelytoencourageIPOfirmstoissuemoreoptimisticforecastsforsendingpositivesignalstothemarketsothatIPOproceedscouldbemaximized.Theoptimisticforecastswillespeciallybeis-suedwhenthereisanexpectationofanimprovementintheoperatingperformancedur-ingtheforecastyearcomparedtothepreviousyear.Wefurtherargueinthispaperthatmanagerswillchoosetheoptionofadjustingthereportedearningsupwardusingposi-tivediscretionaryaccrualstoreducetheforecasterrorofoptimisticforecastsformeetingtheforecasterrorthreshold.Theywouldavoidtheoptionofrevisingtheoptimisticfore-castsdownwardbecausedownwardrevisionscouldbeinterpretedasnegativesignalsbythemarket.
Thestudyisbasedon759earningsforecaststhatweredisclosedby253TaiwanindustrialIPOfirmsfrom1994through2001.3Discretionaryaccrualsareusedasaproxyforearningsmanagement,andchangeinthereturnonassets(ROA)onanex-postbasisisusedasaproxyforexpectationofbetterfutureoperatingperformance.WeconductOLSregressionaswellasLogitregressionanalysestoevaluatetheassociationbetweenoptimisticforecasts
TheTSFECissued“GuidelinesforDisclosureofFinancialForecastsbyPublicCompanies”,whichrequiredthecompaniesdesiringtolistwiththeTaiwanStockExchange(TSE)todisclosefinancialforecastspursuanttothelisting.ThepreparationoffinancialforecastsshallbesubjecttotheStatementsofFinancialAccountingStandardsNo.16“PreparationofFinancialForecasts”publishedbytheAccountingResearchandDevelopmentFoundationofRepublicofChinainTaiwan.
TheTSFEC’sadministrativerule(No.82-Taiwan-Finance-Securities-(VI)-02581issuedonOctober30,1993)mentionsthatdisclosureofforwardlookinginformationwillreduceinformationgapbetweeninformedanduninformedtraders,andthiswillfinallypreventtheuseofinsideinformationformakingarbitraryprofits.Theregulationwasissuedin1991andtheforecasterrorthresholdwasoriginallysetat10%offorecasts.In1994,theforecasterrorthresholdwasrevisedto20%Inordertohaveuniformsampleforthestudy,wefocusonIPOsissuedaftertheforecasterrorthresholdwasrevised,i.e.1994.Springer
32
1
RevQuantFinanAcc(2006)26:275–299277
andexpectationofbetteroperatingperformanceduringtheforecastyear.T-testsandnon-parametricWilcoxontestsareconductedtoevaluatewhetherreductionintheforecasterrorisachievedthroughearningsmanagementorforecastrevisions.
TheresultsofthisstudyshowthatTaiwanIPOfirmsissuedmoreoptimisticforecaststhanconservativeforecastsafterthedisclosureregulationwasimposed.TheOLSandLogitregressionresultsshowthatthereisapositiveassociationbetweenoptimisticforecastsandchangeinROAintheforecastyearcomparedtothepre-forecastyear,suggestingthattheIPOfirmsespeciallyissuedmoreoptimisticforecastswhenoperatingperformanceduringtheforecastyearwasexpectedtobebetterthanthepreviousyear.Theresultswithregardtoreductionofforecasterrorshowthatinthecaseofoptimisticforecaststheforecasterrorthresholdismetmostlybyadjustingthereportedearningsupwardusingdiscretionaryaccru-alsthanrevisingearningsforecasts.Theseresultsthusindicatethattheregulationencouragedmanagerstodisclosemoreoptimisticforecastsandthereportedearningsaremanipulatedtomeettheforecasterrorthreshold,whichreducesthequalityofearningsinformation.Thesefindingsthussuggestthattheregulationhasnotachievedtheobjectiveofenhancingtheuse-fulnessofreportedearningsforinvestmentdecisionsbecausethequalityofreportedearningshasbeencompromised.
Thestudymakesthefollowingimportantcontributionstotheaccountingliterature.First,thefindingsshowthatmandatorydisclosureofearningsforecastsislikelytoresultinmoreoptimisticforecastsbyIPOfirms.Second,managersarelikelytomanipulatethereportedearningstomeettheforecasterrorthreshold,especiallyofoptimisticforecasts,andthiswillreducethequalityofreportedinformation.Thus,amandatoryregulationfordisclo-sureofearningsforecasts,especiallyintheSouthEastAsiancountries,whicharegen-erallyassociatedwithlowlegalinvestorprotection,islikelytoreducethequalityofre-portedearnings,whichwillenhancetheusefulnessofearningsinformationforinvestmentdecisions.
Theremainderofthepaperisorganizedasfollows.InthepartII,webrieflydescribetheTSFECregulationandprovidealiteraturereviewrelatedtothestudy.TheresearchdesignisdiscussedinpartIII,whichincludesdiscussiononhypotheses,researchmethodologyusedinthestudy,andsampleselectionprocedures.TheresultsarepresentedinpartIVandconclusionisprovidedinpartV.
2.TSFECregulationandliteraturereview2.1.TSFECregulation
Disclosureofearningsforecastsonavoluntarybasisisnotcommonincountrieswithde-velopingeconomies.4Consequently,investors,whohavenoaccesstoinsideinformation,dependonsourcesotherthandisclosuresbymanagersforforward-lookinginformation.Thus,non-availabilityofreliableinformationonthefirms’futureoperatingperformancetoallpotentialinvestorsonanequitablebasisresultsinsignificantinformationasymmetrybe-tweeninformedanduninformedinvestors.InordertoreduceinformationasymmetryforIPO
4
OurinvestigationindicatedthattheTaiwanIPOfirmsrarelyissuedearningsforecastsbeforetheTSFECregulation.Moreover,thedevelopmentofearningsforecastsbysecurityanalystsisnotacommonphenomenoninTaiwan.
Springer
278RevQuantFinanAcc(2006)26:275–299
firms,5theTSFECissuedaregulationin1991thatmadeitmandatoryforTaiwanIPOfirmstoincludeearningsforecastsintheirIPOprospectusesandalsodiscloseearningsforecastsfortwoyearsafterissuanceofIPOs.
TheTSFECregulationalsostipulatespenaltyforfirmsthatdonotmeettheforecasterrorthreshold.Thefirmsviolatingtheforecasterrorthresholdarenotallowedtoraiseadditionalcapitalinthemarketwithoutspecialpermission.Thoughtheoriginalthresholdwassetat10%offorecasterror,itwasrevisedto20%effective1994.Accordingtotherevisedforecasterrorthreshold,theactualreportedearningsshallnotdeviatemorethan20%fromthepredictedearningsineitherdirection.Thefirmsare,however,allowedtorevisetheirforecastswithoutanyrestrictiononthenumberofrevisionsbeforeactualearningsarereported.6Theintendedobjectiveofallowingforecastrevisionsisprobablytoencouragemanagerstoissuemorerealisticearningsforecasts.TheTSFECmay,however,alsoaskthefirmstorevisetheearningsforecastsifitconsideredthattheforecastswereunrealistic.7Ifviolatingfirmsintendtoraiseadditionalcapitalinthemarket,theyarerequiredtorequestforareviewprocess.8
2.2.Literaturereview
MostcountriesallowdisclosureofearningsforecastsbytheIPOfirmsonavoluntarybasis.WebrieflyreviewtheliteraturedealingwithearningsforecastsissuedbyIPOfirms(includedintheIPOprospectuses)intheUK,NewZealand,Australia,CanadaandothercountriesintheSouthEastAsianregion.ThemainfocusofthisreviewistoexaminewhethertheIPOfirmsissuedmoreoptimisticorconservativeforecastsandhowtheforecasterrorisreduced.Additionally,wediscussrelevantstudiesontheUSIPOfirms,especiallywithregardtoearningsmanagementbythesefirmsduringthepre-IPOperiod.
Onanoverallbasis,thereviewindicatesthatdisclosureofearningsforecasts,especiallybytheUK,AustralianandCanadianfirmsonavoluntarybasisdidnotresultindisclosureofmoreoptimisticforecasts,probablybecauseofwell-developedfinancialmarketsinthesecountries.ThefindingsofstudiesontheforecastsissuedbytheUKIPOfirmsindicatethattheseforecastshavegenerallybeenmoreconservativethanoptimistic,i.e.thereportedearningsaregenerallyhigherthanearningsforecasts.Thus,therehasbeennoneedtoadjustthereportedearningsupwardtoreducetheforecasterrors.
Wangetal.(2005)explorethedifferencesinIPOanomaliesbeforeandafterthenewregulationwasissuedinJune,1991.Theempiricalresultssupporttheirpresuppositionsthattheinitialreturns,honeymoonperiodsandaftermarketreturnsofmandatorydisclosersaftertheimpositionofthe1991financialforecastsregulationweresignificantlylowerthanthoseofnon-mandatorydisclosers.
TheTSFECregulationhasplacednolimitonthenumberofrevisionssolongastherevisionsareissuedbeforetheactualearningsarereported.
Examplesofthedirectivestorevisetheforecastsarefoundinthefollowingarticle,whichisexcerptedfromChinaTimespressdatedOctober14,1998:“AfterthetwocasesofundulybiasedmanagementforecastsdonebyTung-HoSteel...andActionElectronics,TSFEChasrequestedeightmorefirmstorevisetheirfinancialforecasts.Sincetherearemanyotherfirmscomingoutwithdownwardforecastrevisions,itisexpectedthatmorefirmswillshowuponTSFEC’ssanctioninglist.”
TSFEC’sattitudeplaysanimportantpartintheprocessofIPOapplication.AsstatedinArticle12oftheCriteriaGoverningtheOfferingandIssuanceofSecuritiesbySecuritiesIssuersinTaiwan,newsharesofalistedcompanycanbeissueduponapprovalofTSFEC.IfafirmisrequiredbytheTSFECtocorrectthepubliclydisclosedfinancialforecastfortwotimesintheyearofapplicationorduringthetwopreviousyearsoreventhefinancialforecastsaremodifiedmorethantwotimesinanyyear,theTSFECmaynotallowafirmtoraiseequityordebtcapitalinthemarket.Springer
8765
RevQuantFinanAcc(2006)26:275–299279
Priorto1991,theAustralianfirmsrarelydisclosedearningsforecastsintheIPOprospec-tuses,andiftheforecastsweredisclosed,theywerefoundtobehighlyinaccurate(e.g.Brown,etal.,2000).Afterthe1991CorporationsLaw,therehasbeenanincreaseinthefrequencyofforecastsincludedintheIPOprospectuses,andtheiraccuracyalsoimproved(HowandYeo,2001).Thesestudies,however,donotevaluatehowtheforecasterrorisreduced.
ThoughtheOntarioSecuritiesCommissionallowedtheCanadianfirmstoincludeearningsforecastsintheirIPOprospectusesonavoluntarybasisfrom1982,thefirmsrarelyincludedtheearningsforecastsintheirIPOprospectuses.AccordingtoClarkson,etal.(1992),theCanadianIPOfirmsdiscloseearningsforecastsonlywhentheybelievethattheforecastswouldimprovemarketexpectations.
UnlikemanyotherBritishCommonwealthcountries,theNewZealandsecuritiesregula-tionsrequiredisclosureofprofitforecastsintheIPOprospectuses(FirthandSmith,1992).TheforecastsincludedintheIPOprospectusesofBritsishfirmsare,however,foundtobeconservative(e.g.DevandWebb,1972).Mak’s(1989)findingsreportthatonanoverallbasistherehasbeenanabsoluteearningsforecasterrorintherangeof100percentfortheNewZealandfirms,andthatthereisapositiveassociationbetweenforecasterrorandforecasthorizon.Inarecentstudybasedontheirsamplefromtheperiod1987through1994,Hsu,etal.(2000)findthattheforecastsissuedbytheNewZealandfirmsinfacthavebeenmorepessimistic.
TheIPOfirmsinsomeSouthEastAsiancountriesalsoissueearningsforecastsonavoluntarybasisandseveralstudieshaveexaminedaccuracyoftheirforecasts.WithregardtotheHongKongIPOfirms,Chanetal.(1996)findthatthat60%offorecasterrorsoftheirsamplefirmshaveameanabsoluteforecasterrorof18%.Jaggi(1997)reportedthattheearningsforecastsofHongKongfirmsarecomparativelymoreaccuratethantheIPOforecastsfromothercountries,suchasAustralia,Canada,andNewZealand.ChengandFirth(2000)alsofindthattheforecastsbyIPOfirmsaremoreaccuratethantheIPOforecastsfromothercountries.
SomeothercountriesintheSouthEastAsianregion,suchasMalaysiaandSingapore,requiredisclosureofearningsforecastsintheIPOprospectuses.Jelic,etal.(1998)haveexaminedtheaccuracyofearningsforecastsincludedintheIPOprospectusesofMalaysianfirmsandtheyfindthat,onaverage,themeanforecasterroris+33%,whiletheabsoluteforecasterroris55%.Firthetal.(1995),whoexaminedforecastaccuracyof114SingaporeIPOprospectusesfortheperiodof1980to1993,reportameanabsoluteforecasterrorof10%andameansignedforecasterrorof20%forthesefirms.TheirfindingsthusindicatethatearningsforecastsprovidedinSingaporeanIPOprospectusesaremoreaccuratethanthosemadeinAustraliaandUK.
TheChinaSecuritiesRegulatoryCommission(CSRC)alsorequirestheChineseIPOfirmstodiscloseprofitforecastoftheIPOyear.ChenandFirth(1999)reportthatonaveragetheforecastsincludedintheprospectusesoftheChineseIPOfirmshavebeenconservative.ThemagnitudeofabsoluteforecasterrorsisfoundtobehigherthanthatoftheHongKongandSingaporefirms,butlowerthanthatoftheAustralian,Canadian,andNewZealandfirms.TheUSSecuritiesandExchangeCommission(SEC)doesnotrequireearningsforecaststobeincludedintheIPOprospectuses,andtheUSfirmsrarelyincludeearningsforecastsintheIPOprospectusesonavoluntarybasis.SeveralstudieshavebeenconductedwhethertheIPOfirmsmanipulatetheirearningsduringthepre-IPOperiod.ThefindingsofthesestudiesshowthattheUSfirmsgenerallyengageinupwardmanipulationofreportedearningsduringthepre-IPOyearstosendpositivesignalstothemarket(e.g.Friedlan,1994;Teoh,WelchandWong,1998b;Teoh,WelchandRao,1998;DuCharme,MalatestaandSefcia,2001).Asaresultofupwardmanipulationofreportedearningsinthepre-IPOyears,aportionofthe
Springer
280RevQuantFinanAcc(2006)26:275–299
earningsisshiftedfromthepost-IPOperiodtothepre-IPOperiod.Consequently,theIPOfirmsarefoundtobeassociatedwithunderperformanceduringthepost-IPOperiod(e.g.Teoh,WelchandWong,1998b).
ThoughtheUSIPOfirmsgenerallydonotissueearningsforecasts,someofthem,how-ever,arefoundtoissueearningsforecastsonavoluntarybasisaftertheIPOperiod.StudieshavebeenconductedtoexaminewhethertheissuanceofearningsforecastsbytheUSonavoluntarybasisduringthenon-IPOperiodwouldresultinmanipulationofreportedearnings.Ithasbeenreportedthattheforecast-issuingfirmsgenerallyengageinearningsmanipulationtoreducetheforecasterror.Kasznik(1999)findsthatthefirmsgenerallyusepositivediscre-tionaryaccrualstoreducetheforecasterror,whereasJaggiandSannella(1995)reportthatthemanagersmaychoosetheaccountingmethodthatwouldreducetheforecasterror.Themotivationforreducingtheforecasterrorisgenerallytoavoidcostsassociatedwithpoten-tiallegalactionsbyshareholdersifthereportedearningswoulddeviatefromtheforecastedearningsconsiderably(e.g.Skinner,1994;Frankel,JohnsonandNelson,1995;Teoh,WelchandRao,1998b;Baginski,Hassell,2002).
3.Researchdesign
Inthissection,wefirstdevelophypothesesforthestudyandthenexplainhowthefore-casterrorismeasuredanddiscretionaryaccruals,whichareusedasaproxyforearningsmanagement,arecalculated.Wealsodiscusstheproceduresforsampleselection.3.1.Hypotheses
3.1.1.Disclosureregulationandearningsforecasts
TheregulatorybodiesintheUSAandotherindustrializedcommonlawcountriesgenerallydonotrequireinclusionofearningsforecastsintheIPOprospectuses.Thefirmsmay,however,includeearningsforecastsintheIPOprospectusesonavoluntarybasisinsomecountries.AnimportantreasonfornotincludingearningsforecastsintheIPOprospectusesonavoluntarybasisinthecommonlawcountriesisprobablytoavoidpotentiallegalactionbyinvestorsiftheforecastsarenotrealized.Intheabsenceofearningsforecasts,theUSIPOfirmsaregenerallyfoundtosendpositivesignalstothemarketontheirIPOsbymanipulatingthereportedearningsduringthepre-IPOyears(e.gTeoh,WelchandRao,1998b;Clarkson,etal.,1992).
Unliketheregulatorybodiesinthecommonlawindustrializedcountries,theTaiwanregulatorybody,i.e.theTaiwanSecuritiesandFuturesExchangeCommission(TSFEC),issuedaregulationrequiringthefirmstoincludeearningsforecastsintheIPOprospectusesandtodiscloseearningsforecastinformationfortwoyearsafterissuingtheIPO.ThemainpurposeofthisregulationhasbeentoreduceasymmetryofinformationwhenIPOsareissued.Itwasrealizedthatnotenoughfuture-orientedinformationwasavailabletoinvestorsontheIPOfirmsformakingtheirinvestmentdecisionspriortoearningsdisclosureregulation.9Themandatorydisclosureregulationwasimposedexpectingthatreliablefuture-orientedearningsinformationwouldbecomeavailabletoallinvestorsonafairandequitablebasis.
Only5outof89IPOfirmsmadeearningsforecastsonavoluntarybasisfortheperiodof1983to1991Junebeforeearningsdisclosureregulationwasimposed.Springer
9
RevQuantFinanAcc(2006)26:275–299281
Inthispaper,wearguethattherequirementofissuingearningsforecastswouldencouragemanagerstoissuemoreoptimisticforecaststhanrealisticorconservativeearningsforecasts.ManagerswouldbemotivatedtomaximizetheirIPOproceedsbysendingpositivesignalstothemarketonthefirm’sfutureperformancethroughoptimisticforecasts.10TheexpectationofoptimisticforecastsisalsosupportedonthegroundthatinvestorprotectionrightsundertheTaiwaneselegalsystem,similartothelegalsystemofothercountriesintheAsianPacificBasinregion,areweak(e.g.LaPortaetal.,1998;FanandWong,2002).Inordertodetermanagerstoissuebiasedearningsforecastsandprotectinvestors’interests,theTSFECregulationincludesapenaltyclauseifthefirmsfailtomeettheforecasterrorthreshold.Thispenaltyisintheformofspecialpermissionforraisingadditionalcapitalinthemarket.Thethrustofthispenaltyis,however,weakenedbyanotherprovisionintheregulationthatenablesthefirmstoobtainawaiverinspecialcaseswhentheforecastthresholdisviolated.Inviewofweakinvestorlegalprotectionrightsandnot-so-stringentpenaltyundertheregulation,wearguethatmanagersofIPOfirmswouldhaveastrongmotivationtoissueopti-misticforecastsforsendingpositivesignalstothemarket,andthiswillreducethereliabilityofearningsforecasts.Wetestthisexpectationonthefollowinghypothesis:
H1:TheIPOfirmsissuemoreoptimisticforecaststhanrealisticorconservativeforecastsaftertheimpositionofTSFECregulationrequiringtheIPOfirmstodiscloseearningsforecasts.
3.1.2.Optimisticforecastsandfutureexpectedoperatingperformance
EventhoughtheTSFEC’sdisclosurerequirementwouldprovideastrongmotivationtoman-agersofIPOfirmstoissueoptimisticforecaststomaximizetheirIPOproceedsbecauseoflowlegalpotentialcostsforissuingsuchforecasts,weexpectthemanagerstobeconcernedabouttheirreputationandcredibilityinthemarketplaceforissuingoptimisticforecastswith-outconsideringthefirm’sfutureoperatingperformance.Inordertomaintaintheirreputationandcredibility,weexpectthemanagerstoissueoptimisticforecastsespeciallywhentheyexpectanimprovementinthefirm’sfutureoperatingperformance.Ifthefutureoperatingperformanceisnotexpectedtoimprove,themanagerswouldbecautiousinissuingoptimisticforecasttoavoidtarnishingtheirreputation,whichcouldresultinlosingcredibilityfortheminthemarketplace.
Weusethefirm’sfutureoperatingperformanceonanex-postbasisasaproxyformanagers’expectation,andmeasuretheoperatingperformancebythereturnonassets(ROA),basedonthefirm’soperatingnetincome.WeusethechangeinROAfortheforecastperiodoverthepre-forecastperiodtoevaluatewhetherthemanagerexpectedanimprovementintheoperatingperformanceduringtheforecastperiod.ApositivechangeintheROAwouldindicateanimprovement,whereasnochangeoranegativechangewouldreflectanexpectationofnoimprovementintheoperatingperformance.Wedevelopthefollowinghypothesistotestthisexpectation:11
H2:ThereisapositiveassociationbetweenoptimisticearningsforecastsandchangeinROA,aproxyfortheexpectationonoperatingperformance.
FindingsoftheexistingstudiesbasedonUSfirmsshowthattheIPOfirmssendpositivesignalstothemarkettooptimizetheIPOproceeds(Teoh,WelchandRao,1998,199b).
11
10
WealsotestthishypothesisontheROAchangebasedonthepre-managedearnings.
Springer
282RevQuantFinanAcc(2006)26:275–299
3.1.3.Earningsmanagementandforecasterror
TheTSFECregulationsetsaforecasterrorthresholdwhichthefirmsarerequiredtomeet.Iftheyviolatethisthreshold,theyareheldinviolationoftheregulationandpenaltyforthisviolationisthattheywouldnotbeallowedtoraisefundsinthemarketinfuturewithoutspecialpermission.Thus,iftheforecasterrorisoutsidethethreshold,managerswillhavetomakeastrategicdecisionwhethertointerveneandbringtheforecasterrorwithinthethresholdornot.Eventhoughthepenaltyfornotmeetingtheforecasterrorthresholdisnotsosevere,wearguethatmanagerswouldattempttostaywithintheforecasterrorthresholdbecauseitwouldenhancetheircredibility.
Reductionintheforecasterrorwouldbeachievedeitherbyrevisingtheearningsfore-casts,asallowedundertheTSFECregulation,orbymanipulatingthereportedearningsusingdiscretionaryaccruals.Wearguethatmanagerswouldchosethealternativeofreducingtheforecasterror,especiallyofoptimisticforecasts,byadjustingthereportedearningsusingdis-cretionaryaccrualsratherthanrevisingtheinitialearningsforecasts.Inthecaseofoptimisticforecast,wearguethatdownwardrevisionwouldbeavoidedbecauseitcouldsendnegativesignalstothemarket,whichwouldhaveanegativeimpactonthemanagers’credibility(e.g.Kasznik,1999).Inthecaseofconservativeforecasts,managerscouldadjusttheearningsforecastsupwardoradjustthereportedearningsdownwardandcreate“cookiejar”reservesforuseinthefutureperiods.Thechoicebetweenforecastrevisionsandearningsmanagementwouldbemadedependingonthesituationandtoachievethesetobjectiveunderthatsituation.Inthisstudy,wetestwhethertheforecasterrorofoptimisticforecastswillbereducedbymanipulatingthereportedearningsusingdiscretionaryaccrualsorrevisingearningsforecasts.Thefollowinghypothesisisdevelopedtotesttheassociationbetweenearningsmanagementandforecasterrorreduction:
H3:Theforecasterrors,especiallyofoptimisticforecasts,arereducedmorebyadjustingthereportedearningsusingdiscretionaryaccrualsthanbyrevisingtheearningsforecasts.3.2.Calculationofforecasterrors
Theforecasterroriscalculatedasthedifferencebetweenthepredictedearnings(PE)andreportedearnings(RE)deflatedbytheabsolutevalueofPE.TheabsolutevalueofPEisusedasascalertoeliminatetheeffectofminusvaluesofPEinthedenominator.12FE=(PE−RE)/|PE|Where,
FE=ForecastError
PE=Predicted(Forecasted)EarningsRE=ReportedEarnings
?PE?=AbsolutePredictedEarnings
(1)
12
ThisformulaisalsousedbyTSFECtoevaluatetheforecasterrorofIPOs.Springer
RevQuantFinanAcc(2006)26:275–299283
Weidentifyinitialforecasts(PEIN)andlastrevisedforecasts(PELR),13andsimilarlyweidentifyactualreportedearnings(RE),andactualpre-managedearnings(PME).ThePMEisobtainedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE):PME=(RE−TDA)
(2)
Wecalculatethreetypesofforecasterrorstoevaluatethefrequencyandmagnitudeoferrorsatdifferentstagesofthemanagerialdecisionmakingprocess.First,wecalculatetheforecasterrorsbasedonthedeviationsbetweeninitialpredictedearnings(PEIN)(withoutanyrevisions)andactualpre-managedearnings(PME),andthiserroristermedasFE1forecasterror.Thisforecasterrorisusedtoevaluatetherelativemagnitudeofdifferencebetweeninitialforecastsandpre-managedearnings,whichwillsignifytheamountofforecasterrorthatneedstobereducedformeetingtheforecasterrorthreshold.FE1=(PEIN−PME)/|PEIN|
(3)
ThepositivesignofFE1(FE1>0)indicatesthatthepredictedearningsarehigherthanactualearnings,andinthiscasetheforecastsarereferredtoasoptimisticforecasts.Iftheforecasterrorislessthan0(FE1<0),itmeansthatthereportedearningsarehigherthanthepredictedearnings,andtheseforecastsarereferredtoasconservativeforecasts.
TheforecasterrorFE2iscalculatedonthebasisoflastrevisedforecast(PELR)andpre-managementearnings(PME),andthisforecasterrorsignifiesthemagnitudeofforecasterroraftertheforecastsarerevised.Iftheforecasterrorthresholdismetbyrevisingtheearningsforecasts,therewillbenoneedforadjustingactualearnings.FE2=(PELR−PME)/|PELR|
(4)
Third,wecalculatetheforecasterrorbasedonlastrevisedforecastandreportedearnings,anditistermedasFE3forecasterror.Thismeasureindicateswhethertheforecasterroriswithintheforecasterrorthresholdanditwouldalsoprovideinformationonthemagnitudeofforecasterrorreducedbyrevisingtheforecastsand/oradjustingactualearnings.FE3=(PELR−RE)/|PELR|
3.3.Calculationofdiscretionaryaccruals
Moststudiesintheliteraturehaveusedtotaldiscretionaryaccruals(TDA)toevaluateearningsmanagement.CalculationofTDAarebasedonthetotalassets,changesinrevenuesandaccountsreceivables,andfixedassetsofthefirms(e.g.Jones,1991;DeFondandJiambalvo,1994;JaggiandLee,2002).14Recently,ithasbeenpointedoutthatestimationofdiscretionary
Thestatisticsonrevisionofforecastsshowsthatmostforecastswererevisedonlyonce,whereassomeofthemwererevisedtwiceandonlythreeforecastswererevisedthreetimes.Wecalculateforecasterrorbasedoninitialforecastsforallforecasts.Theforecasterrorsonlastrevisionwillonlybecalculatedforthoseforecaststhatwererevised.Iftheforecastwasnotrevised,theforecasterrorforinitialforecastsandlastrevisedforecastwillbethesame.Incasetheforecastwasrevisedonce,thentheforecasterrorforlastrevisionwillbebasedonthisfirstrevision,andthesimilarprocedureisfollowedforsecondandthirdrevisionofforecasts.Theeffectivenessofdiversifiedcross-sectionalandtime-seriesdiscretionaryaccrualmodelshasbeenex-aminedbyDechow,SloanandSweeney(1995),Guay,Kothari,Watts(1996)andSubramanyam(1996).They
Springer
1413
(5)
284RevQuantFinanAcc(2006)26:275–299
accrualisalsoinfluencedbythefirm’sperformance.Therefore,thefirm’sperformance,proxiedbythefirm’sROA,isincludedinestimatingdiscretionaryaccruals(e.g.Kothari,LeoneandWasley,2005;Ashbaugh,LafondandMayhew,2003).Lately,severalstudiesalsohaveemphasizedtheimportanceofcurrentdiscretionaryaccruals(CDA)inevaluatingearningsmanagement(e.g.Ashbaugh,LafondandMayhew,2003;Becker,etal.,1998;Frankel,JohnsonandNelson,2002).Therefore,wedecidedtouseboththegrowth-adjustedTDAandCDAtoobtainrobustresults.
TDAiscalculatedinthefollowingsteps:Inthefirststep,totalaccruals(TA)arecalculatedasthedifferencebetweennetincomebeforeextraordinaryitemsandoperatingcashflows:TAit=NIBEit−OCFitwhere,
TAit=totalaccrualsforfirmiinyeart,
NIBEit=netincomebeforeextraordinaryitemsforfirmiinyeart,OCFit=operatingcashflows.
Inthesecondstep,parametercoefficientsareestimated:
TAit/Ait−1=α1[1/Ait−1]+β1[REVit/Ait−1−ARit/Ait−1]+β2[PPEit/Ait−1]
+β3[ROAit−1]+εit
Where,
TAit=totalaccrualsforfirmiinyeart,Ait−1=totalassetsforfirmiinyeart−1,
REVit=changeinnetrevenuesforfirmiinyeart,
ARit=changeinaccountsreceivableforfirmiinyeart,PPEit=grosspropertyplantandequipmentforfirmiinyeart,ROAit−1=operatingincomebytotalassetsforfirmiinyeart−1,εit=errortermforfirmiinyeart.
Asalaststep,thetotaldiscretionaryaccruals(TDA)arecalculatedusingtheestimatedparametersfromequation(7):
(7)(6)
TDA=TAit/Ait−1−{a1[1/Ait−1]+b1[REVit/Ait−1−ARit/Ait−1]
+b2[PPEit/Ait−1]+b3[ROAit−1]}
whereuitrepresentstotaldiscretionaryaccruals(TDA)forfirmiintheeventyeart.InordertocalculateCDA,wefirstcalculatetotalcurrentaccruals(TCA),asfollows:TCAit=(CAit−CASHit)−(CLit−STDit)
(9)(8)
havealsopointedouttheweaknessesofeachmodel.Thefindingsofastudy(Dechow,SloanandSweeney,1995)indicatethatmodifiedcross-sectionalJonesmodelperformsbetterthananyothermodels.Subramanyam(1996)suggeststhecross-sectionalversionoftheJonesmodelhasstatisticalpropertiesthatmakeitbetter,exante,thanitstime-seriescounterpart.Springer
RevQuantFinanAcc(2006)26:275–299285
Where,
TCAit=totalcurrentaccrualsforfirmiinyeart,CAit=currentassetsforfirmiinyeart,CASHit=cashforfirmiinyeart,
CAit−CASHit=changeinthedifferenceofcurrentassetsandcashforfirmiinyeart,
CLit=changeincurrentliabilitiesforfirmiinyeart,
STDit=changeintheportionoflong-termliabilitiesduewithinayearofFirmiforperiodt.
TheparametersforcalculatingCDAareestimatedbyusingthefollowingequation:TCAit/Ait−1=α1[1/Ait−1]+β1[REVit/Ait−1−ARit/Ait−1]
+β2[ROAit−1]+εit
Where,
TCAit=totalcurrentaccrualsforfirmiinyeart,Ait−1=totalassetsforfirmiinyeart−1,
REVit=changeinnetrevenuesforfirmiinyeart,ARit=changeinaccountsreceivableforfirmiinyeart
ROAit−1=operatingincomebytotalassetsforfirmiinyeart−1,εit=errortermforfirmiinyeart.
Thecurrentdiscretionaryaccruals(CDA)arecalculatedbyusingtheestimatedparametersasfollows:
CDAit=CAit/Ait−1−{a1[1/Ait−1]+b1[REVit/Ait−1−ARit/Ait−1]
+b2[ROAit−1]}
whereCDAitrepresentsthediscretionarycurrentaccrualsforfirmiintheeventyeart.3.4.Sampleselection
ThestudyisbasedonearningsforecastsofTaiwanindustrialIPOfirmsfrom1994through2001withfiscalyearendingDecember31.15ThesefirmsareidentifiedfromtheTaiwanEconomicJournaldatabase(TEJ).TheIPOfirmsbelongingtoutilities,financialinstitutionsandotherregulatedindustriesareexcludedfromthesamplebecauseoftheirspecialregulatorynature,whichcouldconfoundevaluationofmandatoryregulationondisclosureofearningsforecasts.Weidentified253firmsthatissued75916earningsforecastsduringtheIPOyear(t-periodforecasts)andtwoyearssubsequenttotheIPOyear(t+1andt+2periodsforecasts).Outof759forecasts,328havebeenrevisedand431havenotbeenrevised(seeTable5forrevisiondetails).Thoughsomeinitialforecastsarerevisedmorethanonceduring
Weexcludetheperiodfrom1991through1993fromtheanalysestofocusonasingleforecasterrorthresholdthroughoutthestudyperiod.Theoriginalforecasterrorthresholdwas10%,whichwasrevisedto20%in1994.Thetotalnumberofobservationsforthesamplefirmsshould759(3×253).Becausedatawerenotavailableforsomeobservationsfort+2periodforecasts,thenumberofobservationshasbeenreducedto677.
Springer
1615
(10)
(11)
286
Table1DistributionofsamplebyyearandindustryPanelA:Distributionofforecastsbyyear
t-periodforecasts
t+1-periodforecasts
RevQuantFinanAcc(2006)26:275–299
T+2-periodforecasts
#ofTotalNon-revisedRevisedNon-revisedRevisedNon-revisedRevisedYearfirmsforecastTotalforecastforecastTotalforecastforecastTotalforecastforecast199422199539199628199719199820199928200055200142Total2536611784576084165126759223928192028554225312179810122613107102219111016292914622392819202855422538161481010172010314231411101838221502239281920285542253111412881129251181125161112172617135PanelB:NumberofforecastsbyindustryIndustryCode111213141516171820212223and2425262729
IndustriesCementFoodsPlasticsTextiles
Electric&machineryElectricAppliance&CableChemicalsGlass&CeramicsSteel&IronRubberElectronicsConstructionTransportationTourism
Wholesale&RetailOthers
Total
Numberoffirms154152041121011321971318253Numberofforecasts3151245601233630339657213954759thefiscalyearinwhichtheywereissued,weuselastrevisioninouranalysis.Ananalysisofrevisionsindicatesthatmostrevisionsareclusteredaroundthetimewhenthesemi-annualreportsareissued.DistributionofsampleobservationsbyyearandindustryisprovidedinTable1.
Distributionofforecastsoveryearsindicatesthat,withtheexceptionofyear2000and2001,thereisnosignificantdifferenceinthenumberofforecastsissuedoverdifferentyears.Thenumberofforecastsissuedinyear2000and2001ishighprobablybecausemoreIPOswereissuedbyelectronicfirmsduringthisperiod.
Springer
RevQuantFinanAcc(2006)26:275–299287
Distributionofsampleforecastsbyindustryindicatesthatalargenumberofindustrygroupsarecoveredinthestudy,butthemainconcentrationappearstobeontheelectronicgroup,followedbyelectric/machineryandconstruction.
4.Results
4.1.Optimisticversusconservativeforecasts
WecalculatetheforecasterrorFE1usingequation(3),whichreflectsthedifferencebetweeninitialearningsforecastsandpre-managedactualearnings(earningsbeforeadjustments)andthisforecasterroralsoindicateswhethertheinitialforecastisoptimisticorconservative.Apositiveforecastwillsignifythattheinitialforecastisoptimistic,i.e.thepredictedearningsarehigherthanthepre-managedearnings,whereasanegativeforecasterrorwillsignifythattheearningsforecastisconservative,i.e.thepredictedearningsarelowerthanthepre-managedearnings.ThefrequencyandmagnitudeofforecasterrorFE1areprovidedinTable2.
Theresultsonthefrequencyofoptimisticandconservativeforecasts(PanelA,Table2)showthat66.93%ofthetotalforecastsareoptimistic(FE1>0),whereas33.07%areconser-vative(FE1<0).Wetestwhetherthedifferenceinthefrequencydistributionofoptimisticandconservativeforecastsisstatisticallysignificantusingbinomialtestsforthetotalsam-pleaswellasindividualyears.Weconductbinomialtestonthehypothesisthatoptimisticandconservativeforecastsareequallydistributed.Theresultsshowthatthefrequencyofoptimisticforecastsissignificantlyhigherthantheprobabilityof50%forthetotalsampleaswellasforindividualyears.TheseresultsthusprovidesupporttoourhypothesisH1thatthenumberofoptimisticforecastsishigherthanthatofconservativeforecasts,suggestingthatmorefirmsissuedoptimisticforecaststhanconservativeforecastsaftertheregulationondisclosureofearningsforecastswasimposed.
Wealsoevaluateforecasterrorsofoptimisticandconservativeforecastsbyconductingt-testonthemeanvaluesofforecastsforthetwogroupsandWilcoxontestonthemedianvaluesofforecastsofthetwogroups.TheresultsarecontainedinPanelBoftheTable2.Theresultsshowthatthemeansaswellasmediansofforecasterrorsofoptimisticforecastsaresignificantlyhighercomparedtothoseofconservativeforecastsforthetotalsampleaswellasforthesub-samplesforallperiods.Thedifferenceinthemeansaswellasmediansisstatisticallysignificantforthetotalsampleaswellasfortandt+1forecasts,whereasthedifferenceinthemeanvaluesoft+2forecastsoftwogroupsisstatisticallyinsignificant.ThesefindingsindicatethattheforecasterrorsforoptimisticforecastsarehigherthantheforecasterrorofconservativeforecastsandprovideadditionalsupporttohypothesisH1.4.2.Operatingperformanceandoptimisticforecasts
Weusethechangeinreturnofassets(ROA)intheforecastyearfromtheprecedingyearasaproxyfortheexpectationontheoperatingperformanceforevaluatingtheassociationbetweenissuanceofoptimisticforecastsandexpectationofbettereconomicperformanceduringtheforecastyear.First,wecomparethefrequencydistributionofoptimisticforecastsinthegroupsofobservationswithhighandlowROAduringtheforecastyearcomparedtothepreviousyear,i.e.positiveandnegativechangeinROAintheforecastyear.TheresultsshowthatthefrequencyofoptimisticforecastsissignificantlyhigherinthegroupofobservationswithpositivechangeinROAintheforecastyear.ThefrequencyofoptimisticforecastsinthegroupofpositivechangeinROAintheforecastyearis57.14%comparedto42.86%for
Springer
Table2Frequencydistributionandforecasterrorsofoptimisticandconservativeforecasts288
Springer
Conservativeforecasts(FE1a<0)Percentage67.98b***81789225169.17b***63.64b***66.93b***NPercentage32.0230.8336.3633.07Conservativeforecasts(FE1a<0)Median1.17720.77801.04930.9428251−1.150392−1.357278−0.912681−1.1444NMeanMedian−0.4355−0.6113−0.8007−0.6302t-valuefordifferenceinabsolutemeanvaluesc2.41∗∗1.32∗1.60∗2.84∗∗∗Z-statisticsfordifferenceinabsolutemedianvaluesd4.1061∗∗∗1.8275∗∗1.02603.9651∗∗∗PanelA:FrequencyofoptimisticandconservativeforecastsOptimisticforecasts(FE1a>0)PeriodNt(IPOyear)172t+1175t+2161Total508PanelB:MeanandmedianforecasterrorsofoptimisticandconservativeforecastOptimisticforecasts(FE1a>0)PeriodNMeant(IPOyear)1721.7594t+11751.0048t+21611.7374Total5081.4922RevQuantFinanAcc(2006)26:275–299
∗∗∗1%significancelevel,∗∗5%significancelevel,∗10%significancelevel,onbasisofone-tailedtests.aForecasterrorFE1iscalculatedasthedifferencebetweeninitialforecastedearnings(PE)andpre-managedearnings(PME)deflatedbytheabsolutevalueofinitialforecastedINearnings(|PEIN|),(i.e.(PEIN-PME)/|PEIN|).Pre-managedearnings(PME)arecalculatedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE).Totaldiscretionaryaccruals(TDA)arederivedusingJones’modifiedcross-sectionalmodelcontrolledforperformance(seeequation(6),(7)and(8)fordetails).bThe50%asabenchmarkisusedtotestthetendencyofoptimisticandconservativeearningsforecast.cThet-testiscomputedonthedifferenceintheabsolutevalue(magnitude)ofmeanoptimisticandconservativeforecasts.dWilcoxonZ-statisticsiscomputedbasedonthedifferenceintheabsolutevalue(magnitude)ofmedianoptimisticandconservativeforecasts.RevQuantFinanAcc(2006)26:275–299289
thegroupwithnegativechangeintheROA.Thedifferenceisstatisticallysignificantatthe1%level.
Second,weevaluatetheassociationbetweenoptimistic/conservativeforecastsandchangeinROAbyconductingLogitregressionandcontrollingfortheeffectofothervariablesthatmayinfluencethechoiceofoptimisticandconservativeforecasts.TheLogittestisconductedbycodingtheforecastswithpositiveforecasterrors(optimisticforecasts)as1,andtheforecastswithnegativeforecasterrors(conservativeforecasts)as0.ThefollowingLogitmodelisused:
Prob(OptimisticForecast=1)=F(β0+β1CHGROAit+β2SIZEit
+β3HORIZONit+β4BETAit+β5MBit−1+εit)
where:
F(β’X)=eβ’X/(1+eβ’X),
CHGROAit=Changeinreturnsonassets(ROA)inyeartandt−1.SIZEit=logarithmoftotalassetsinyeart.
HORIZONit=Numberofmonthsbetweeninitialmanagementearningsforecastsan-nouncementdateandearningsannouncementdate.BETAit=Systematicriskforfiscalyear-end.
MBit−1=Market-to-bookratioatthebeginningofthefiscalyear.
TheROAiscalculatedbydividingtheoperatingincomebytotalassets.TheCHGROAitisachangeinreturnsonassets(ROA)inyeartandt−1.17Theuseofcontrolvariablesisconsistentwithearlierstudies.Someearlierstudiesindicatethatforecastoptimismmaybeinfluencedbythefirmsize(e.g.Atiase,1985;Becker,etal.,1998).ChoiandZiebart(2000)showthatoptimisticbiasincreasesastheforecasthorizon(HORIZON)increases.Thesystematicrisk(BETA)isincludedtocapturetheeffectofriskonforecasterrors(e.g.Imhoff,1978),andmarket-to-bookratioisaddedtocontrolforthepotentialgrowtheffect(ChoiandZiebart,2000).TheresultsarecontainedinTable3(PanelA).
TheLogitregressionresults(PanelA)showthatthecoefficientforthechangeinROAispositiveandisstatisticallysignificantatthe.001level.TheresultsbasedonthechangeinROAmeasuredbythepre-managedearnings(PME),i.e.PMEtoperiodtminusPMEforperiodt−1,alsoshowsignificantlypositivelyassociation.TheseresultsthussupportourhypothesisH2thatoptimisticforecastsareespeciallyissuedwhenthefutureoperatingperformance,proxiedbyROA,isexpectedtobehigh.
Inordertoevaluatewhetherthemagnitudeofoptimisticandconservativeforecastsisassociatedwiththemagnitudeofexpectedimprovementintheperformance,weconductanOLSregressiontestonthecontinuousvariableofforecasterrors,wherethepositiveforecasterrorsreflectoptimisticforecastsandnegativeforecasterrorsreflectconservativeforecasts.Thefollowingregressionmodelisused.
FE1it=β0+β1CHGROAit+β2SIZEit+β3HORIZONit
+β4BETAit+β5MBit−1+εit
17
(12)
(13)
WealsoconductatestonthechangeinROAbasedonthepre-managedearnings,whicharecalculatedasreportedearningsadjustedbydiscretionaryaccruals.
Springer
290RevQuantFinanAcc(2006)26:275–299
Table3Associationbetweenoptimistic/conservativeforecastsandfirmperformanceforthetotalsamplePanelA:LogitRegressionAnalysis
Prob(OptimisticForecast=1)=F(β0+β1CHGROAit+β2SIZEit+β3HORIZONit
+β4BETAit+β5MBit−1+εit)Variables
InterceptCHGROAitbSIZEitc
HORIZONitdBETAiteMBit−1fChi-squarePseudo-R2hCorrectrate
No.ofObservationsOptimisticforecastsConservativeforecastsN
Coefficient−5.270340.57000.29700.19180.4874−0.0035
Chi-square7.620399.8251∗∗∗5.4789∗∗57.2664∗∗∗4.4660∗∗2.0406
Marginaleffectg
266.63∗∗∗0.41780.9%508251759
7.99020.05840.03770.0960−0.0007
PanelB:OLSRegressionAnalysis
FE1ita=β0+β1CHGROAit+β2SIZEit+β3HORIZONit+β4BETAit+β5MBit−1+εitVariablesInterceptCHGROAitbSIZEitc
HORIZONitdBETAiteMBit−1fAdj.RF-statisticsp-valueN
∗∗∗1%
Coefficient−3.464123.17860.18120.1032−0.3590−0.0007
t-value−1.216.37∗∗∗∗0.962.79∗∗∗−1.07−0.61
0.063710.77<.0001759
significancelevel,∗∗5%significancelevel,∗10%significancelevel,onbasisofone-tailedtests.aFE1=Earningsforecasterrors;ForecasterrorFE1iscalculatedasthedifferencebetweeninitialforecastedearnings(PEIN)andpre-managedearnings(PME)deflatedbytheabsolutevalueofinitialforecastedearnings(|PEIN|),(i.e.(PEIN-PME)/|PEIN|).Pre-managedearnings(PME)arecalculatedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE).Totaldiscretionaryaccruals(TDA)arederivedusingJones’modifiedcross-sectionalmodelcontrolledforperformance(seeequation(6),(7)and(8)fordetails).
bCHGROA=Changeinreturnsonassetsinyeartandt−1;returnsonassets=operatingincome
it
dividedbytotalassets.
cSIZE=Logarithmtotalassetsinyeart
it
dHORIZON=Numberofmonthsbetweeninitialmanagementearningsforecastsannouncementdate
it
andearningsannouncementdate.eBetait=Systematicriskforfiscalyear-end.fMB
it−1=fiscalyear’sbeginningmarket-to-bookratio.
gThemarginaleffectarecomputeaseβ’X/(1+eβ’X)2,whereβ’XiscomputedatthemeanvaluesofX.hPseudo-R2isMcFadden’smeasureofgoodnessoffit.Springer
RevQuantFinanAcc(2006)26:275–299291
where,
FE1it=ForecastErrorbasedonunadjusted(pre-managed)earningsforfirmiandperiodt.
TheOLSregressionresultsarecontainedinPanelBofTable3.TheresultsshowthatthecoefficientforthechangeinROAissignificantlypositive,18suggestingthatthereisapositiveassociationbetweentheexpectationonthemagnitudeofimprovementintheperformanceandthemagnitudeofoptimisticforecasts.TheseresultsprovideadditionalsupporttoourhypothesisH2.Theresultsalsoshowthatthereisapositiveassociationbetweenoptimisticforecastsandforecasthorizon(HORIZON),indicatingthatforecastswithlongerforecasthorizonaremoreoptimistic.Thisresultisconsistentwiththeresultsofpriorstudies(e.g.ChoiandZiebart,2000;Baginski,1997)
Weconductedanadditionaltestontheassociationbetweenoptimistic/conservativefore-castsandchangeinROAontheIPO-yearforecastsonly(t-periodforecasts).TheresultsfortheIPOyeararesimilartothoseforthetotalsample.
RecognizingthattheassociationbetweenthechangeinROAandchoiceofoptimisticforecastsmaybesubjecttotwodifferentinterpretations,wewouldliketoaddcautioustoourresults.Asarguedinthispaper,apositivechangeinROAfortheforecastyear,whichreflectsmanagement’sexpectationofbetteroperatingperformanceintheforecastyear,isinterpretedtosuggestthattheexpectationofbetterperformanceresultsinissuanceofoptimisticforecasts.Ontheotherhand,itcouldbearguedthatahigherROAduringtheforecastmaybetheresultofmanipulationofreportedearnings,whichwouldbethecaseofself-fulfillingprophecyonachievingahigheroperatingperformanceduringtheforecastyear.Therefore,wecautiouslyinterpretourfindingstosupportourhypothesisH2thattheoptimisticforecastsareassociatedwiththeexpectationofbetteroperatingperformanceduringtheforecastyear.4.3.Reductionofforecasterrors
4.3.1.Discretionaryaccrualsandforecasterror
Becauseitisdifficulttomakedirectevaluationofmanipulationofreportedearningsbymanagementtoreducetheforecasterror,weevaluateearningsmanipulationbyevaluatingdiscretionaryaccruals,aproxyforearningsmanagement.Theuseofdiscretionaryaccrualsasaproxyforearningsmanagementisconsistentwithseveralearlierstudiesonearningsmanagement.WecalculateTDAandCDAusingequations(8)and(11)respectively,butwetabulatetheresultsbasedonCDAbecausecurrentdiscretionaryaccrualsareconsideredtobemoresusceptibletoearningsmanagementintheshortrunthantotaldiscretionaryaccruals(e.g.Ashbaugh,LafondandMayhew,2003;Becker,etal.,1998;Frankel,JohnsonandNelson,2002.)TheTDAresults,whicharenottabulated,are,however,similartotheCDAresults.Thefrequencyoffirmsusingpositiveandnegativecurrentdiscretionaryaccruals(CDA)separatelyforoptimisticandconservativeforecastsisprovidedinTable4.
White’s(1980)methodisusedtoevaluatethesignificanceofcoefficients.Allvarianceinflationfactors(VIF)arelessthan10,indicatingthattheregressionresultsarenotaffectedbymulticollinearity(Kennedy,1992).DWstatisticsshowthatautocorrelationisinsignificant.Theresultsremainunchangedwhenthecoefficientsarere-estimatedusingBelsley,Kuh,andWelsch(1980)model.Weeliminateobservationsfromtheanalysesif(1)theabsolutevalueofstudentizedresidualsisgreaterthan2,(2)studentizedresidualwithahatmatrixvalueisgreaterthan2*P/N(pisthenumberofparametersandnisnumberofobservations),or(3)aDFFITSstatisticisgreaterthan2(P/N)1/2.
Springer
18
292RevQuantFinanAcc(2006)26:275–299
Table4Currentdiscretionaryaccrualsbyoptimisticandconservativeforecasts
PanelA:Frequencyofpositiveandnegativetotaldiscretionaryaccrualsforoptimisticforecasts
Optimisticforecasts(FE1a>0)Positivecurrent
Discretionaryaccrualsb
Periodt(IPOyear)T+1T+2Total
TotalN172175161508
N148148133429
%86.0584.5782.6184.45
Negativecurrent
DiscretionaryaccrualsbN24272879
%13.9515.4317.3915.55
Z-statisticsfor%difference9.455∗∗∗9.146∗∗∗8.275∗∗∗15.529∗∗∗
PanelB:Frequencyofpositiveandnegativetotaldiscretionaryaccrualsforconservativeforecasts
Conservativeforecasts(FE1a<0)Positivecurrent
Discretionaryaccrualsb
Periodt(IPOyear)T+1T+2Total
aForecast
Negativecurrent
DiscretionaryaccrualsbN
TotalN817892251
N1110526
13.5812.825.4310.36
Z-statisticsfor%difference−6.555∗∗∗−6.567∗∗∗−8.550∗∗∗−12.560∗∗∗
706887225
86.4287.1894.5789.34
∗∗∗1%significancelevel,∗∗5%significancelevel,∗10%significancelevel,onbasisofone-tailedtests.
errorasFE1iscalculatedasthedifferencebetweeninitialforecastedearnings(PEIN)and
pre-managedearnings(PME)deflatedbytheabsolutevalueofinitialforecastedearnings(|PEIN|).Pre-managedearnings(PME)arecalculatedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE).
bInordertoobtaincurrentdiscretionaryaccruals(CDA),wefirstcalculatetotalcurrentaccruals(TCA)asfollowing:TCAit=(CAit−CASHit)−(CLit−STDit).TCAit=totalcurrentaccrualsforfirmiinyeart,CAit=currentassetsforfirmiinyeart,CASHit=cashforfirmiinyeart,(CAit−CASHit)=changeindifferenceofcurrentsandcashforfirmiinyeart,andCLit=changeincurrentliabilitiesforfirmiinyeart.STDit=changeintheportionoflong-termliabilitiesduewithinayear.Thenon-discretionarycurrentdiscretionaryaccrualsarederivedusingJones’modifiedcross-sectionalmodelcontrolledforperformance(seeequation(10)fordetails).Finally,currentdiscretionaryaccruals(CDA)arecalculatedbyusingtheestimatedparametersa1andb1intheequation(10)asfollow-ing:CDAit=TCAit/Ait−1−{a1[1/Ait−1]+b1[REVit/Ait−1−ARit/Ait−1]+b2[ROAit−1],whereCDAitrepresentsthediscretionarycurrentaccrualsforfirmiintheeventyeart.
TheresultscontainedinPanelAoftheTable4showthatonanoverallbasis,84.45%ofoptimisticforecastsareassociatedwithpositivecurrentdiscretionaryandonly15.55%withnegativecurrentdiscretionaryaccruals.TheresultsfortheIPOyear,t+1,andt+2yearsarealmostsimilar.TheresultscontainedinPanelBofthetableshowthat89.34%oftheconservativeforecastsareassociatedwiththeuseofnegativediscretionaryaccrualswhereas17.8%withpositivediscretionaryaccruals.Theseresultsthusindicatethatpositivediscretionaryaccrualsareextensivelyusedforreducingtheforecasterrorofoptimisticfore-casts.Negativediscretionaryaccrualsareprimarilyusedforreducingtheforecasterrorofconservativeforecaststomeettheforecasterrorthreshold.
Springer
RevQuantFinanAcc(2006)26:275–299Table5FrequencyofforecastrevisionsPanelA:Frequencyofforecastrevisions
Totalinitialforecasts253253253759
Numberofinitialforecastsnotrevised107103118328
Numberofinitialforecastsrevised146150135431
NumberofrevisionsofinitialforecastsRevisedonce112115111338
Revisedtwice30302383
Revisedthree3418
Revisedforecast1102
293
Periodt(IPOyear)t+1t+2Total
PanelB:Upwardanddownwardrevisions
Numberofinitialforecastsrevised146150135431
Numberofearningsforecasts,includingrevisions185191160536
UpwardrevisionsN765052178
Percentage14.189.339.7033.21
DownwardrevisionsN109141108358
Percentage20.3326.3120.1566.79
Periodt(IPOyear)t+1t+2Total
PanelC:Upwardanddownwardrevisionsbyoptimisticandconservativeforecasts
Totalrevisedforecasts
Optimistic(FE1a>0)Conservative(FE1a<0)
∗∗∗1%aForecast
UpwardrevisionsN52103
Percentage18.64%67.76
DownwardrevisionsN22749
Percentage81.36%32.24%
Z-statistcsfordifferenceinupwardand
downwardrevisions−10.476∗∗∗4.379∗∗∗
279152
significancelevel,∗∗5%significancelevel,∗10%significancelevel,onbasisofone-tailedtests.errorasFE1iscalculatedasthedifferencebetweeninitialforecastedearnings(PEIN)andpre-managedearnings(PME)deflatedbytheabsolutevalueofinitialforecastedearnings(|PEIN|).Pre-managedearnings(PME)arecalculatedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE).Totaldiscretionaryaccruals(TDA)arederivedusingJones’modifiedcross-sectionalmodel(seeequations(6),(7)and(8)fordetails).
4.3.2.ForecasterrorreductionthroughdiscretionaryaccrualsversusforecastrevisionsTheforecasterrorcanbereducedeitherbyrevisingearningsforecastsorbyadjustingthereportedearnings.Weanalyzeastohowmanyforecastsarebroughtwithintheforecasterrorthresholdthroughforecastrevisionsandbyearningsmanagement.Beforethiscomparativeanalysisisconducted,weexaminethefrequencyofforecastrevisionsofoptimisticandconservativeforecasts.TheresultsarecontainedinTable5:
Outof759totalinitialforecasts,only431arerevised,andtheremaining328forecastsarenotrevised.Outof431revisedforecasts,338forecastsarerevisedonlyonceinthefiscalyear,83arerevisedtwice,whereas8and2arerevisedthreeandfourtimesrespec-tively.Thefrequencydistributionforupwardanddownwardrevisions(PanelB)showsthat66.79%ofrevisionsaredownward.Theassociationofupward/downwardrevisionswith
Springer
294RevQuantFinanAcc(2006)26:275–299
Table6Forecasterrorreductionthroughforecastrevisionsandadjustmentofreportedearningswithdiscretionaryaccruals
Numberofforecastsbrought
intothresholdusing
Numberofdiscretionaryforecastsaccrualsbroughtinto(i.e.FE3c=
(PELR−threshold
RE)/using
|PELR|)revisions
(5)=(2)−(3)(6)=(3)−(4)612283
308178486
Upperand
lowerboundsofforecasterrorsthreshold(1)Upperbound(FEd>20%)Lowerbound(FEd<−20%)Total
∗∗∗1%aForecast
Forecasterrorsbasedoninitialforecastandpre-managedearnings(i.e.FE1a=(PEIN−
PME)/|PEIN|)(2)428220648
Forecasterrorsbasedonlastrevisionsofforecastandpre-managedearnings(i.e.FE2b=(PELR−
PME)/|PEIN|)(3)e367198565
Numberoffirms
outsidethethresholdattheendoffiscalyear(i.e.FE3c=(PELR−RE)/|PELR|)(4)592079
significancelevel,∗∗5%significancelevel,∗10%significancelevel,one-tailedtests.
errorasFE1iscalculatedasthedifferencebetweeninitialforecastedearnings(PEIN)andpre-managedearnings(PME)deflatedbytheabsolutevalueofinitialforecastedearnings(|PEIN|).Pre-managedearnings(PME)arecalculatedbydeductingtotaldiscretionaryaccruals(TDA)fromthereportedearnings(RE).Totaldiscretionaryaccruals(TDA)arederivedusingJones’modifiedcross-sectionalmodel(seeequations(6),(7)and(8)fordetails).
bForecasterrorasFE2iscalculatedasthedifferencebetweenlastforecastedearnings(PE)andpre-LR
managedearnings(PME)deflatedbytheabsolutevalueoflastforecastedearnings(|PEIN|).
cForecasterrorasFE3iscalculatedasthedifferencebetweenlastforecastedearnings(PE)andreported
LR
earnings(RE)deflatedbytheabsolutevalueoflastforecastedearnings(|PELR|).
dFEisaproxyofforecastserrorasFE1,FE2,andFE3inthePanelA’scolumnof(2),(3)and(4)respectively.eThecolumn(3)ofPanelA,andthecolumn(2)ofPanelBareinsertedtomeasuretheextentofearningsrevisionsandearningsmanagement.
optimistic/conservativeforecasts(PanelC)showsthattheoptimisticforecastsareprimarilyreviseddownward(81.36%).Theresultsontheconservativeforecastsshowthat67.76%arerevisedupwardand32.24%downward.Therevisionanalysisthusindicatesthatopti-misticforecastsaremostlyreviseddownwardtoreducetheforecasterror.Ontheotherhand,thoughasignificantnumberofconservativeforecastsarerevisedupward,someforecastsarealsoreviseddownward.Downwardadjustmentofconservativeforecastssuggeststhatmanagersmayusedownwardrevisionstoreducemarketexpectationsandatthesametimeusediscretionaryaccrualstoreducetheforecasterrorformeetingtheforecasterrorthreshold.Weconductthecomparativeanalysisofforecasterrorreductionthroughearningsmanage-mentandforecastrevisionsbycalculatingtheforecasterrorsFE2andFE3usingequations(4)&(5)respectively.TheforecasterrorFE2enablesustoidentifythenumberofforecastsoutsidetheforecasterrorthresholdaftertheforecastsarerevised,andFE3enablesustoeval-uatethenumberofforecastsoutsidetheforecasterrorthresholdaftertheforecastsarerevisedandearningsareadjustedwithdiscretionaryaccruals.TheforecasterrorFE2iscalculatedonthebasisoflastrevisedforecastandpre-managedearnings,whereastheforecasterrorFE3iscalculatedonthebasisoflastrevisedforecastandreportedearnings,i.e.earningsafterearningsmanagement.TheresultsarepresentedinTable6.
Springer
RevQuantFinanAcc(2006)26:275–299295
Fig.1DistributionofforecaseerrorsofIPOs
TheresultsbasedonFE1(column2)ofPanelAshowthat648initialforecastsareoutsidetheforecasterrorthreshold,428forecastsareoutsidetheupperboundand220outsidethelowerbound.TheresultsbasedonFE2(column3)indicatethat565forecastsareoutsidetheforecasterrorthresholdaftertheforecastsarerevised(367forecastsareoutsidetheupperboundand198outsidethelowerbound).Theseresultsthussuggestthatonly83forecastsarebroughtwithintheforecastthresholdbyonlyrevisingtheforecasts,61withintheupperboundoftheforecasterrorand22withinthelowerbound.
Theresultscontainedincolumn4arebasedonFE3,i.e.afterforecastsarerevisedandearningsareadjustedwithdiscretionaryaccruals.Thenumberofforecastsoutsidetheforecasterrorthresholdis79,indicatingthatasignificantnumberoffirmsreducedtheirforecasterrorthroughearningsmanagementandforecastrevisions.
ReductionofforecasterrorsthroughearningsmanagementandforecastrevisionsisalsopresentedgraphicallyinFigure1.
Springer
296RevQuantFinanAcc(2006)26:275–299
PanelAbasedonforecasterrorFE1(i.e.beforetheforecastsarerevisedandactualearningsareadjusted)showsthattheforecasterrorsarewidelydispersed,andalargenumberofforecasterrorsareoutsidetheforecasterrorthresholdof20%.PanelBcontainsthefrequencydistributionofforecasterrorsaftertheforecastsarerevised.Theresultsshowthatthereisaslightimprovementinthedispersionofforecasterrors,buttheimprovementisinsignificant.Thispanelthussuggeststhatthenumberofforecastsbroughtwithintheforecastthresholdthroughforecastrevisionsisinsignificant.InPanelC,wepresentthefrequencydistributionofforecasterrorsafteractualearningsareadjustedwithdiscretionaryaccruals.Theresultsshowthatasignificantnumberofforecasterrorshavebeenreducedandtheforecastsarebroughtwithinthethresholdsof20%.PanelDpresentsthefrequencyofforecasterrorsbasedontherevisedforecastsandreportedearnings.Theresultsshowthattheforecasterrorsarenowconcentratedwithintheforecasterrorthreshold.
WeconductatestsuggestedbyBurgstahlerandDichev(1997)toevaluateinequalitiesatdifferentintervals.Theresults(untabulated)showthattheinequalitiesarehigheratthe20%thresholdcomparedtotheadjacentbands,andthatthereisdiscontinuityindistributionatthethresholdpoint.Theactualfrequencyattheuppertwodecilesband,i.e.from0.18to.20isrelativelyhigherthanitsexpectedfrequency,andtheresultsarestatisticallysignifi-cant(t-value=4.899,prob.>.01).Theseresultsthusindicatethattheforecastserrorsareconcentratedattheupperboundof20%threshold.
TheresultscontainedinTable6andFigure1thusshowthattheforecasterrorisprimarilyreducedthroughtheuseofdiscretionaryaccrualsandpositivediscretionaryaccrualsareusedtoadjustthereportedearningsupwardforoptimisticforecasts.Inordertohaveabetterinsightintocomparativeanalysisofearningsmanagementbyoptimisticandconservativeforecasts,wecomparetheuseofdiscretionaryaccrualsbetweenthetwogroupstomeettheforecasterrorthreshold.Theresultsindicatethatthemeansofcurrent(total)discretionaryaccrualsfortheoptimisticsub-sampleare0.096(0.089)comparedtothemeansof−0.073(−0.078)fortheconservativesub-sample.Thet-testresultsbasedontheabsolutevalueofdiscretionaryaccrualsindicatethatthedifferencebetweenthemeansofthesub-samplesisstatisticallysignificantatthe1%(10%)level.
TheaboveresultsthusprovidesupporttoourhypothesisH3thattheforecasterrorismorereducedbyadjustingthereportedearningswithdiscretionaryaccrualsthanbyrevisingtheearningsforecasts.Theuseofdiscretionaryaccrualsissignificantlyhigherforoptimisticforecaststhanconservativeforecasts.
4.4.AdditionalTest
Weconducttwoadditionalteststoevaluatetheimpactofregulationonearningsmanagement.First,wecomparediscretionaryaccrualsoftheIPOsissuedaftertheregulationwiththatoftheIPOsissuedbeforetheregulationwasimposed.Theresultsshowthatdiscretionaryaccrualsfortheperiodpriortotheregulatoryperiodarenotsignificantlyhigherthan0,whereasdiscretionaryaccrualsofIPOsfortheregulatoryperiodaresignificantlyhigherthan0.TheseresultsthusprovideadditionalsupporttotheexpectationthatearningsmanagementbyIPOfirmsincreasedconsiderablyaftertheTSFECregulationondisclosureofearningsmanagementwasimposed.
Second,wecomparediscretionaryaccrualsofthesamplefirmsfortheregulationperiodwiththoseoftheperiodaftertwoyearsofissuingIPOs(i.e.post-regulationperiod).Theresultsshowthatasignificantnumberofthesesamplefirmsareassociatedwithnegativediscretionaryaccrualsduringthepost-regulationperiod.Theseresultsthusindicatethat
Springer
RevQuantFinanAcc(2006)26:275–299297
positivediscretionaryaccrualsthatwereusedduringtheregulationperiodforreducingtheforecasterrorsrequiredreversalaftertheregulationperiod.
5.Conclusion
ThestudyhasevaluatedwhethertheTSFECregulationondisclosureofearningsforecastsresultedindisclosureofmoreoptimisticearningsbyIPOfirms,andwhethertherewasahigheruseofdiscretionaryaccruals,especiallybyoptimisticforecasts,toreducetheforecasterrorthanbyrevisingtheearningsforecasts.Thestudyalsospecificallyevaluatedwhetherthedisclosureofoptimisticforecastswasassociatedwiththemanagers’expectationonthefirms’operatingperformanceduringtheforecastyear.
TheresultsshowthattheIPOforecastsaswellasforecastsfortwomandatoryyearsafterissuanceofIPOsweremoreoptimisticthanconservative.TheIPOfirmsespeciallyissuedoptimisticforecastswhentheROAintheforecasterrorwasexpectedtobehigherthantheROAoftheprecedingyear.Additionally,theresultsshowthattheforecastserrorswerereducedmorebyusingdiscretionaryaccruals,especiallyforoptimisticforecasts,thanrevisingtheearningsforecasts.AcomparisonofearningsmanagementbythesampleIPOfirmswithearningsmanagementbyIPOfirmspriortotheregulationindicatesthattheearningsmanagementincreasedconsiderablyaftertheregulation.
Thefindingsofthisstudyindicatethattheregulationondisclosureofearningsforecastshasresultedinprovidingmoreoptimisticforecastsforsendingpositivesignalstothemarket,andthereportedearningsweremanagedusingdiscretionaryaccrualsforreducingtheforecasterrorsofoptimisticforecasts.Thesefindingsthussuggestthatmandatoryearningsforecastregulationdidnotresultinissuingmorerealisticearningsforecasts.Instead,itencouragedmanipulationofreportedearnings,whichreducedthequalityofreportedearnings.Thefindingsofthisstudythussuggestthatregulationondisclosureofearningsforecastsisnotlikelytoimprovethequalityandusefulnessofreportedearnings.
BecausetheTSFEChasnotmadeanyinformationavailableonactionstakenbyitagainsttheforecasterrorviolatingfirms,ithasnotbeenpossibletoincludethepenaltyaspectintheanalysisonthechoiceofforecastrevisionsanduseofdiscretionaryaccrualstoreducetheforecasterror.Asdiscussedearlier,theTSFEChasallowedtheviolatingfirmstoappealiftheycouldjustifytheirviolation,whichmaybeduetoexchangeratechange,unexpectedimpactofnon-economicfactorssuchaslaborstrike,etc.Additionalresearch,ifinformationonpenaltyfortheviolatingfirmsbecomesavailable,willprovideabetterinsightintotheimpactofpenaltyontheassociationbetweenforecastdisclosurerequirementandearningsmanagement.
References
Ashbaugh,H.,R.LafondandB.W.Mayhew,“DoNonauditServicesCompromiseAuditorIndependence?
FurtherEvidence.”TheAccountingReview78(3),611–639(2003).
Atiase,R.,“PredisclosureInformation,FirmCapitalization,andSecurityPriceBehaviorAroundEarnings
Announcements.”JournalofAccountingResearch23(Spring),21–36(1985).
Baginski,S.P.andJ.M.Hassell,“DeterminantsofManagementForecastPrecision.”TheAccountingReview
72(2),303–312(1997).
Baginski,S.P.,J.M.HassellandM.D.Kimbrough,“TheEffectofLegalEnvironmentonVoluntaryDisclosure:
EvidencefromManagementEarningsForecastsIssuedinU.S.andCanadianMarkets.”TheAccountingReview77(1),25–50(2002).
Springer
298RevQuantFinanAcc(2006)26:275–299
Becker,C.L.,M.L.Defond,JiambalvoandK.R.Subramanyam,“TheEffectofAuditQualityonEarning
Management.”ContemporaryAccountingResearch15(Spring)1–24(1998).
Belsley,D.,E.KuhandR.Welsch,RegressionDiagnostics,Wiley,NewYork,NY,1980.
Brown,P.,A.Clark,J.HowandK.Lim,“TheAccuracyofManagementDividendForecastsinAustralia.”
Pacific-BasinFinanceJournal.(8),309–331(2000).
Burgstahler,D.andI.Dichev.,“EarningManagementtoAvoidEarningsDecreasesandLosses.”Journalof
AccountingandEconomics24(1),99–126(1997).
Chan,A.M.Y.,C.L.K.Sit,M.M.L.Tong,D.C.K.WongandR.W.Y.Chan.,“PossibleFactorsofthe
AccuracyofProspectusEarningsForecastsinHongKong.”TheInternationalJournalofAccounting.31(3),381–398(1996).
Chen,G.andM.Firth,“TheAccuracyofProfitForecastsandtheirRolesandAssociationswithIPOFirm
Valuations.”JournalofInternationalFinancialManagementandAccounting,10(3),202–226(1999).Cheng,T.Y.andM.Firth,“AnEmpiricalAnalysisoftheBiasandRationalityofProfitForecastsPublished
inNewIssueProspectuses.”JournalofBusiness,Finance,andAccounting,27(3/4)423–446(2000).Choi,J.H.andD.A.Ziebart,“AReexaminationofBiasinManagementEarningsForecasts.”Workingpaper,
HongKongUniversityofScienceandTechnology(2000).
Clarkson,P.M.,A.Dontoh,G.RichardsonandS.E.Sefcik,“TheVoluntaryInclusionofEarningsForecasts
inIPOProspectuses.”ContemporaryAccountingResearch8(2),601–626(1992).
Dechow,P.M.,R.G.SloanandA.P.Sweeney,“DetectingEarningsManagement.”TheAccountingReview
70,193–225(1995).
DeFond,M.andJ.Jiambalvo,“DebtCovenantViolationandManipulationofAccruals,AccountingChoices
inTroubledCompanies.”JournalofAccountingandEconomics17(1),145–176(1994).
Dev,S.andM.Webb,“TheAccuracyofCompanyProfitForecasts.”JournalofBusinessFinance4(3),26–39
(1972).
DuCharme,L.L.,P.H.MalatestaandS.E.Sefcia,“EarningsManagement:IPOValuationandSubsequent
Performance.”JournalofAccounting,Auditing,andFinance16(4),369–396(2001).
Fan,P.H.andT.J.Wong,“CorporateOwnershipStructureandtheInformativenessofAccountingEarnings
inEastAsia,”JournalofAccountingandEconomics33(August),401–425(2002).
Firth,M.andA.Smith,“TheAccuracyofProfitsForecastsinInitialPublicOfferingProspectuses.”Accounting
andBusinessResearch22,239–247(1992).
Firth,M.,B.C.H.Kwok,C.K.Liau-TanandG.H.Yeo,“AccuracyofProfitForecastsContainedinIPO
Prospectuses.”AccountingandBusinessReview2(1),55–83(1995).
Frankel,R.M.,M.F.JohnsonandK.K.Nelson,“TheRelationBetweenAuditor’sFeesforNonauditServices
andEarningsManagement.”TheAccountingReview77(Supplement),71–115(2002).
Friedlan,J.M.,“AccountingChoicesofIssuersofInitialPublicOfferings.”ContemporaryAccountingRe-search11(Summer),1–31(1994).
Guay,W.R.,S.P.KothariandR.L.Watts,“AMarket-BasedEvaluationofDiscretionaryAccruals.”Journal
ofAccountingandResearch34(Supplement),83–105(1996).
How,J.andJ.Yeo,“TheImpactofForecastDisclosureandAccuracyonEquityPricing:TheIPOPerspective.”
JournalofAccounting,Auditing,andFinance16(4),401–425(2001).
Hsu,W.L.,D.HayandS.Weil,“ForecastAccuracyandBiasinIPOprospectuses:RecentNewZealand
Evidence.”PacificAccountingReview12(1),27–59(2000).
Imhoff,E.,“TheRepresentativenessofManagementEarningsForecasts.”TheAccountingReview.53(3),
836–850(1978).
Jaggi,B.andP.Lee,“EarningsManagementResponsetoDebtCovenantViolationsandDebtRestructuring.”
JournalofAccounting,Auditing,andFinance.17(4),295–324(2002).
Jaggi,B.andA.Sannella,“TheAssociationBetweentheAccuaryofManagementEarningsForecastsand
DiscretionaryAccountingChanges.”JournalofAccounting,Auditing,andFinance10(1),1–21(1995).Jaggi,B.,“AccuracyofForecastInformationDisclosedintheIPOprospectusesofHongKongCompanies.”
TheInternationalJournalofAccounting,32(3),301–319(1997).
Jelic,R.,B.SaadouniandR.Briston,“TheAccuracyofEarningsForecastsinIPOProspectusontheKuala
LumpurStockExchange.”AccountingandBusinessResearch29(1),57–72(1998).
Jog,V.J.andR.J.McConomy,“VoluntaryDisclosureofManagementEarningsForecastsinIPOProspectuses.”
JournalBusinessFinance&Accounting30(1),125–167(2003).
Jones,J.J.,“EarningsManagementDuringImportReliefInvestigations.”JournalofAccountingResearch
29(Autumn),193–228(1991).
Kasznik,R.,“OntheAssociationBetweenVoluntaryDisclosureandEarningsManagement.”Journalof
AccountingResearch37(Spring),57–81(1999).
Kothari,S.,a.LeoneandC.Wasley,“PerformanceMatchedDiscretionaryAccrualMeasure.”Journalof
Accounting&Economics39,163–197(2005).Springer
RevQuantFinanAcc(2006)26:275–299299
LaPorta,R.,F.Lopez-de-Silanes,A.ShleiferandR.Vishny,“LawandFinance.”JournalofPoliticalEconomy
106,1113–1155(1998).
Mak,Y.T.,“TheDeterminantsofAccuracyofManagementEarningsForecasts:ANewZealandstudy.”
InternationalJournalofAccounting24,267–280(1989).
Skinner,D.,“WhyFirmsVoluntarilyDiscloseBadNews?”JournalofAccountingResearch32(3),38–60
(1994).
Subramanyam,K.R.,“ThePricingofDiscretionaryAccruals.”JournalofAccountingandEconomics22,
249–282(1996).
Teoh,S.,I.WelchandT.Wong,“EarningsManagementandtheUnderperformanceofSeasonedEquity
Offerings.”JournalofFinancialEconomics50(1),63–99(1998a).
Teoh,S.,I.WelchandT.Wong,“EarningsManagementandtheLong-runMarketPerformanceofInitial
PublicOfferings.”JournalofFinance53(6),1935–1974(1998b).
Teoh,S.,I.WelchandG.R.Rao,“AreEarningsDuringInitialPublicOfferingsOpportunistic?”Reviewof
AccountingStudies3(3),175–208(1998).
Wang,Y.,P.Lee,C.ChinandG.Kleinman,“TheImpactofFinancialForecastsRegulationonIPOAnomalies:
EvidencefromTaiwan.”JournalofFinancialRegulationandCompliance.13(2),146–166(2005).
White,H.,“AHeteroscedasticity-consistentCovarianceMatrixEstimatorandDirectTestforHeteroscedas-ticity.”Econometrica.48,817–838(1980).
Springer
因篇幅问题不能全部显示,请点此查看更多更全内容