博弈论:生活中的策略大师
“囚徒困境”
“囚徒困境”最早是由美国普林斯顿大学的数学家塔克于1950年提出来的,是博弈论中最著名的案例。
根据前面的故事,我们假定两个囚徒都只为自己利益打算的所谓“理性主体人”,那么,结果会怎样呢?在甲看来,如果乙选择抵赖,甲选择坦白的话,甲将被释放,但是,如果甲选择抵赖的话,将被判入狱1年,两项比较,甲任务选择坦白对自己更有利;如果乙选择坦白,甲选择坦白的话,甲要坐3年牢,但是,若果甲也选择抵赖的话,可要坐5年牢,两相比较,甲认为还是选择坦白对自己哼有利。可见,不管乙采取什么策略,甲认为选择坦白总是对自己更有利。同样,不管甲采取什么策略,乙认为选择坦白总是对自己更有利。
在这个假定的故事中,显然,最好的策略是双方都选择抵赖,结果是大家都只被判入狱1年。但是,由于两人处于隔离的情况下无法串供,每一个人都是从利己的目的出发,每一方在选择策略时都只选择对自己最有利的策略,但选择这种策略得出的结果又适得其反。到底是选择坦白还是抵赖呢,这就是“囚徒的两难境地”。
实际上,“囚徒困境”是现实生活中许多现象的一个抽象概括,一旦陷入其中,要摆脱这个困境远非易事。例如,冷战时期两个超级大国长达40年的军备竞赛、各国的贸易保护主义倾向和总所周知的价格战等都属于这种情况。
价格大战
经济学把两个企业联合起来垄断或几乎垄断了某种商品的市场,称为双寡头经济。双
寡头经济是经济生活中最典型的博弈现象。例如,美国可口可乐公司和百事可乐公司之间的争斗。
它们争斗的目的当然是增加企业的利润。可能有些读者会想,要增加利润,只要提高商品的价格,赚钱暴不就多了吗?的确,如果你一家企业垄断了整个市场,提高价格当然增加你的利润。但是如果存在两家相互竞争的企业,消费者可以再两家之间选择,这时候提高价格的结果不仅不能增加利润,反而可能会使自己企业的利润下降。如果你提价,对方没有提价,你的东西贵了,消费者就不卖你的东西而买对手的东西。这样,你的市场份额下降很多,利润也就急剧下降。但是,如果两家企业都采取比较高的价格,消费者没有别的选择,两家的利润都会上升。
假定两家企业都采取比较低的价格,可以各得利润30亿美元;都采取比较高的价格,各得利润50亿美元;而如果一家采取较高的价格而另一家采取较低的价格,那么价格高的企业利润为10亿美元,价格低的企业因为产品多销而利润将上升到60亿美元。究竟是采用较高的价格好还是采用较低的价格好?
很明显,双方价格大战的结果是都取低价各赚30亿美元的情况。
为什么两家企业那么蠢,要进行价格大战呢?那时因为每家企业都以为对方为敌手,只关心自己的利益。在价格博弈中,只要以对方为敌手,那么不管对方的决策怎样,自己总是采取低价策略才会占便宜。这就促使双方都采取低价策略。
如果清楚这种前景,双方勾结或合作起来,都实行比较高的价格,那么双方都可以因为避免价格大战而获得较高的利润。有人把这样一种合作的做法,叫做“双赢对局”。可惜正如上面揭示的,这些企业处于利益驱动的“囚徒困境”,双赢也就成为了泡影。
许多 商战的对策形势,都可以像价格大战那样,归结为“囚徒困境”的形势,所以,当企业在进行价格大战的时候,我们说他们陷入了“价格大战的囚徒困境”。
情侣博弈
情侣还讲什么博弈?其实,即使是情侣,双方的爱好或者偏好还是不尽相同的。大海和丽娟正在热恋,难得的周六又到了,安排什么节目好呢?周六晚上,中国足球队要在世界杯决赛中和巴西队比赛。大海是个超级球迷,国内的甲级联赛都不肯放过,何况是国家队和心目中偶像巴西队的比赛?也正好是这个周六的晚会上,俄罗斯一个著名芭蕾舞带团莅临该市演出芭蕾舞剧《胡桃夹子》,丽娟崇尚钢琴、芭蕾这样的高雅艺术,怎么肯放过正宗俄罗斯的芭蕾舞剧《胡桃夹子》?那么,一个在自己家里看电视转播的足球赛,一个去剧院看芭蕾演出,不就得了?问题在于,他们是热恋中的情侣,分开度过难得的周六,才是最不乐意的事情。这样一来,他们真是面临一场“博弈”了。
我们不妨这样给大海和丽娟的“满意程度”赋值:如果大海看球让丽娟一个人去看芭蕾,双方的满意程度都为0;两人一起去看足球,大海的满意程度为2,丽娟的满意程度为1;两个人一起去看芭蕾舞,大海的满意程度为1,丽娟的满意程度为2.
情侣博弈的正式名称是“性别之战”。在情侣博弈中,双方都没遇到“囚徒困境”中那样的最佳策略,但是,他们总会作出一个较好的选择,因为他们是热恋的情侣。这里就遇到博弈论中最重要的概念“纳什均衡”(纳什于1950年建立的概念,由于对博弈论作出奠基性的贡献,他在1994年荣获诺贝尔经济学奖),它指明了“情侣博弈”等一大类策略优势不那么明显的博弈的结局。策略优势不那么明显,指的是双方都没有“不论对方采取什么策略,我采取这个策略总比采取任何别的策略更好”的严格优势策略。其实,我们只需留意一种双方“相对优势策略”的组合。在情侣博弈中,双方都取看足球,或者双方都去看芭蕾,就是我们所说的相对优势策略的组合。一旦处于这样的位置,双方都不想单独改
变策略,因为单独改变没有好处。所以,两人一起去看足球是稳定的结局。同样,两人一起去看芭蕾也是稳定的结局。
这种稳定的结局就是“纳什均衡”。
“先下手为强”
让我们再回到情侣博弈。我们知道情侣博弈有两个“纳什均衡”:或者一起看球,或者一起看芭蕾。
情侣博弈可以用来描述友好企业或者有互补性的企业之间的关系。在这种情况下,企业双方偶尔像真正的情侣那样互相谦让一下也有好处。但是,在许多情况下,结果会体现先动优势,双方都得到好处,但是,先行动的一方得益多一些。比方说,两人还没商量,丽娟就打电话告诉大好:我已经买了票,周六一起去看芭蕾,好嘛?他们是恋人,丽娟已经开口说了,大海还会驳她面子吗?如果你觉得没经过商量就先买了票有点过分,那么,可以把情况改为丽娟打电话给大海,建议一起去看芭蕾,得到同意才去买票。我们可以设想,大海接到丽娟的电话,也不会驳她的面子。
我国古代已有“先下手为强”的说法,的确,大量例子说明,在有多个“纳什均衡”的情况下,常常是先动的一方会占一些优势。
但是,要指出的是,现实生活中有许多后动优势的例子。在这里,由于决策或行动有了先后次序,所以叫做“动态博弈”。
威胁的可信性
美国普林斯顿大学古尔教授1997年曾今在《经济学透视》杂志上发表文章,提供深入浅出的例子说明威胁的可信性问题:两兄弟老是为玩具吵架,哥哥老是要枪弟弟的玩具。不耐烦的父亲宣布政策:好好去玩,不要吵我;不然的话,不管你们谁向我告状,我把你们两个都关起来。
被关起来与没有玩具玩相比,情况更加糟糕。现在,哥哥又把弟弟的玩具抢去了,弟弟没办法,只好说:“快把玩具还给我,不然我要告诉爸爸。”哥哥想,你真的向爸爸告状,我是要倒霉的,可是你不告状只不过没玩具玩,告了状却要被关禁闭,告状会使你的境况变得更坏,所以你不会告状。因此,哥哥对弟弟的警告置之不理。的确,如果弟弟是会计算自己利益的理性人,他还是会选择忍气吞声的。可见,如果弟弟是理性人,他的上述威胁不可信。
可是,实际生活中的弟弟,多半不是经济学假设的理性人。想远一些,人们的社会行为和市场行为,也常常不能归结为彻底的理性行为。现实生活中的弟弟也有向爸爸告状的,心想:“你不让我玩,我也让你玩不成。’近年来兴起的实验博弈论,就拿人的实验行为与博弈论的理论探讨进行对比,发展成以“有限理性为”特征的行为心理学。
因篇幅问题不能全部显示,请点此查看更多更全内容