>> A0=[0,0.2;0.1,-0.3]
>> A1=[-0.3,0.2;0.1,0]
>> A2=[0,0.2;0.3,-0.1]
>> H0=[-0.3,0;0.2,0.1]
>> H1=[0.3,0.1;0.2,-0.1]
>> H2=[0,0.1;-0.3,0.2]
>> Q=[0.7,0.5;0.5,1]
>> R=[1,0.2;0.2,0.6]
>> h=0.15
>> setlmis([]);
1
>> P=lmivar(1,[2,1]);
>> lmiterm([1 1 1 P],1,A0,'s');
>> lmiterm([1 1 1 0],Q+h*h*R);
>> lmiterm([1 1 2 P],1,A1);
>> lmiterm([1 1 2 P],-A0',C);
>> lmiterm([1 1 3 P],1 A2);
>> lmiterm([1 1 3 P],1,A2);
>> lmiterm([1 1 4 P],H0',1);
>> lmiterm([1 2 2 P],-C',A1,'s');
>> lmiterm([1 2 2 0],-Q);
>> lmiterm([1 2 3 P],-C',A2);
>> lmiterm([1 2 4 P],H1',1);
>> lmiterm([1 3 3 0],-R);
2
>> lmiterm([1 3 4 P],H2',1);
>> lmiterm([1 4 4 P],-1,1);
>> lmisys=getlmis;
>> [tmin,xfeas]=feasp(lmisys)
>> pmat=dec2mat(lmisys,xfeas,P)
运行结果
Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility
Iteration : Best value of t so far
1 1.420862
2 1.228024
3 1.228024
3
*** new lower bound: 0.070826
Result: best value of t: 1.228024
f-radius saturation: 0.000% of R = 1.00e+009
These LMI constraints were found infeasible
tmin =
1.2280
xfeas =
-0.1338
-0.0107
0.8971
pmat =
-0.1338 -0.0107
-0.0107 0.8971
4
第二个程序
>> C=[0.2,0;1,0.2]
>> A0=[0.5,0;0,0.3]
>> A1=[-1,0;-1,-1]
>> A2=[0,0.2;0.3,-0.1]
>> H2=[0,0.1;-0.3,0.2]
>> H0=[0.2,0;0,0.2]
>> H1=[0.3,0;0,0.3]
>> Q=[0.5,0.3;0.3,1]
>> R=[0.2,0.1;0.1,1]
>> h=0.35
>> setlmis([]);
>> P=lmivar(1,[2,1]);
5
>> lmiterm([1 1 1 P],1,A0,'s');
>> lmiterm([1 1 1 0],Q+h*h*R);
>> lmiterm([1 1 2 P],1,A1);
>> lmiterm([1 1 2 P],-A0',C);
>> lmiterm([1 1 3 P],1,A2);
>> lmiterm([1 1 4 P],H0',1);
>> lmiterm([1 2 2 P],-C',A1,'s');
>> lmiterm([1 2 2 0],-Q);
>> lmiterm([1 2 3 P],-C',A2);
>> lmiterm([1 2 4 P],H1',1);
>> lmiterm([1 3 3 0],-R);
>> lmiterm([1 3 4 P],H2',1);
>> lmiterm([1 4 4 P],-1,1);
6
>> lmisys=getlmis;
>> [tmin,xfeas]=feasp(lmisys)
>> pmat=dec2mat(lmisys,xfeas,P)
运行结果
Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I
The best value of t should be negative for feasibility
Iteration : Best value of t so far
1 1.258002
*** new lower bound: -0.115517
2 1.204465
*** new lower bound: 0.148583
Result: best value of t: 1.204465
7
f-radius saturation: 0.000% of R = 1.00e+009
These LMI constraints were found infeasible
tmin =
1.2045
xfeas =
-0.1942
-0.0264
-0.0850
pmat =
-0.1942 -0.0264 8
-0.0264
-0.0850
因篇幅问题不能全部显示,请点此查看更多更全内容