您的当前位置:首页正文

人工智能教学计划范例

2024-06-09 来源:客趣旅游网

人工智能教学计划范文1

[关键词];财务机器人;会计电算化;人才培养

0引言

正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。

1人工智能的概念[2]

人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。

2中职学校传统会计电算化专业人才培养[3]

2.1课程偏传统基础核算类,轻参与、管理类会计课程

在多数中职学校会计电算化课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。

2.2会计实操偏基础性会计技能,轻数据分析、挖掘

在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。

2.3课程偏模拟操作,轻实际操作

无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。

3人工智能背景下的中职会计电算化人才培养[4]

3.1由基础核算型初级人才向有思想的中级人才转变

人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。

3.2由传统的财务会计向人工智能环境下的管理会计人才转变

财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。

3.3由会计电算化软件操作员向人工智能会计系统的设计者转变

人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。

4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]

4.1更新理念与改变教学计划

笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。

4.2提高教师人工智能等相关理念和技术

要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。

。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。

5结语

总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。

主要参考文献

[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.

[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.

[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.

[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).

人工智能教学计划范文2

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。。。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

人工智能教学计划范文3

 

1 智能系·信科院

 

智能科技系是2002年9月初正式成立的,它完全根植于北人信息科学中心,末作增扩。后者的简称——“信息中心”——虽然易与“计算中心”或“情报资料中心”混淆,却是上世纪八十年代中期北大一些有识之士倡议建立的第一个多学科交叉研究中心。它以数学系、无线电f电子学)系和计算机系为主,联合心理学、中文、遥感等共十个系所而组成,宗旨是开展多学科交叉研究,充分发挥北大的综合优势。即使放在二十余年后的今天来看,这样的举措也是颇有前瞻性和魄力的。在此基础上,北大很快于1986年建立了第一个国家重点实验室。就是这样人数不多的一个机构,先后出过三名院士和一名北大常务副校长。以指纹识别为代表的研究成果进入国际先进行列,在国内得到广泛应用。

 

2003年9月10日,北京大学最大的学院——信息科学技术学院——成立。它包括计算机、电子学、微电子学和智能科学四个系,有十二个(研究)所和中心,两个国家重点实验室和若干部门实验室。系是教学单位,所和中心是研究实体。从此,智能科学系(暨信息中心、国家实验室三位一体)翻开了新的一页。

 

2 专业增列·学会指导

 

成立智能科学系除了要顺应北大“系并院”的潮流,也是完善作为学校基本建制单位所必备的。何新贵院士为系取了名称,如今许多学校也大都采用这样的称谓。查红彬教授担任系主任,笔者是主管学科建设和教学的副主任,具体参与负责各项相关工作。创办国内第一个智能科学与技术本科专业也是我们这一班人继承传统的首要任务。事实上,早在一年多前,大家就进行了酝酿,特别是中国人工智能学会教育工作委员会多次组织的相关研讨,成为重要的准备基础。

 

北大是一级学科下自主增设、增列学科专业的学校。系领导上任伊始第一件事就是要在当年申办智能本科专业,而且志在必得。为此,我们在前期制定了详细的步骤计划,进行了深入调研和各项准备工作。我们起草完成了所需的各项材料(人才需求论证、专业建设规划和适应培养目标的教学计划与课程设置方案、教师教辅队伍和基本办学条件说明以及国内外背景对比材料等),中国人工智能学会涂序彦等学者对此进行了专家论证,协助完成了论证报告。这些工作就绪后,我们在2003年10月下旬向学校主管副校长、教务部负责领导和学院领导做了汇报说明,并于10月30日正式提交申请材料。。2004年初,教育部正式批复并公布了北京大学“智能科学与技术”新的本科招生专业。这个专业名称是查红彬教授建议的,日后成为教育部批复新申办学校的统一提法。

 

。由于北大历来严格控制招生规模,我们的30名招生计划是由信息学院其他三个系从原有计划分配名额中挤出来的。新专业的计划发展规模最终为50名。

 

3 教学计划·四校会议

 

智能科学系虽然成功地创建了国内第一个“智能科学技术本科”专业,但也面临着许多挑战。首先是缺乏本科教学的经验。尽管信息中心前身具有北大最早的硕士点、博士点和博士后流动站,研究生培养己历十余年,但一直实施科研主导体制,未曾从事过本科教学。师资队伍扩充快,新进年轻博士比例大,而真正有过本科教学经历者寥寥无几。此外,信息学院成立后开始调整教学计划,制定了一年级统一课程内容,新生是按学院统一招进来,第一年共同学习,后三年才分专业培养。我们虽然为申办专业制定了一套课程计划,但因不兼容学院的统一规划而未能第一次通过学院教学指导委员会的审核。为此,我们组织学院经验丰富的老教授,为本系青年教师进行教学培训,听取学院主管负责领导和几位多年从事本科教学管理的老系主任对教学计划的修订意见。

 

通过几个月的努力,我们完善了智能科学系的课程体系,并最终通过学院教学指导委员会的审核。这个教学计划具有几个特点:一个大基础——以学院的数、理和信息类为主,强调宽厚扎实;三个核心课程群作为专业理论基础,包括智能基础课程群(智能科学技术导论、人工智能、脑与认知科学、信息论、信号与系统)、机器感知课程群(生物信息处理、图像处理、数字信号处理、模式识别)和计算智能与知识发现课程群(智能信息处理、机器学习、数据挖掘、计算智能等),以及两门实验(机器感知和机器智能)和其他各种选修课。四年学分150分,其中必修88学分(包括全校公选26学分、大类平台20学分、学院要求的13学分、专业必修29学分),专业选修56学分(含专业课44学分、通选课12学分),毕业设计6学分。

 

。全国一些兄弟院校也纷纷来北大了解情况,开展座谈,我们则尽可能贡献自己的经验,给予支持。

 

4 招生·分流

 

从2004年开始,信息科学技术学院按学院大类招生,每年接收330~340名本科生,占全校的1/9左右。学生高考排名在全校属中上,但成绩分布差异较大。与学校的其他学院(多从一个系成长为一个学院,如数、理、化、生等)相比,信息学院是由四个不同的系合并而来的,专业跨度大,因此采用一年分流的模式(上述学院为二年分流),笔者被指定负责这项工作。我们提出自愿为主、计划为辅的方针,尽量满足同学们的兴趣志向。制定的分配计划是:电子学系120人、计算机系110人、微电子系70人、智能科学系30人,允许有10%的调整。分流工作在大一下学期(每年4月份)进行,包括全院动员、四个系专题介绍宣传、开放日参观咨询等几个步骤,可谓热闹非凡,同学们可以充分了解了四个系的专业特色。

 

为了克服盲目性引发的偏差,我们建立了一个网上分流系统,在正式填报专业前,增加了摸底预填报的环节,及时反馈群体意向的分布信息,指导学生们的选择,也便于学院掌握动向,调整措施。这种大类招生、进来一段时间后再分专业的举措体现了北大的人文关怀。智能专业初办,基础条件差,缺乏毕业生记录的宣传说明,与学院其他三个老牌系(电子学系50年历史、计算机和微电子系30年历史)相比较并无优势可言,但是我们通过扎扎实实的工作和细致有效的改进,使这个新方向日益显现出魅力。随着智能专业的成熟,特别是有了第一届毕业生后,就愈加受到更多学生的喜爱。

 

选择智能专业的人数逐年上升,2004级34人、2005级36人、2006级39人、2007级43人,目前正在进行的2008级分流达到45人。除了在信息学院内部的影响力不断扩大,北京大学其他学院的转系情况也开始有了可喜的变化。北大最好的元培计划实验班今年第一次有4名学生选择智能专业,医学部和光华管理学院也有申请者(本文成稿时这项工作还在进行),2008级学生肯定突破50名,我们在第五年就达到了创办智能科学专业的规划目标。

 

5 首届生·班主任

 

在新办专业中,有一项由教授担任智能本科专业班主任的举措。这是利用教授的学识、经验和责任心来更好地管理呵护自己的学生,避免了年轻教师因职称晋升等压力可能出现的疏漏。这一做法取得明显效果,不仅受到同学们的普遍欢迎,信息学院也开始考虑推行。笔者担任了智能专业的第一任班主任。首届学生(2004级)有34名,他们进入北大后毅然选择全新的智能专业是很有勇气的,全班有11名来自北京的学生,5名女同学,这个比例迥异于整个信息学院的总体分布。

 

该班学生的年龄恰与我自己的孩子相同,我天然地熟悉他们的一般特点,也理解家长们的想法。北大信息学院的淘汰率平均是7%,每年都有20多人退学。这班学生在大一时的成绩并不占优,其中有几人处在边缘位置,因此,我立下的最低目标就是确保所有同学不掉队。我首先通过全班民主选举任命了一个5人组成的班委会,这个5人机构在随后的几年中发挥了重要作用:其次走访宿舍,了解每个人的情况,为了消除代沟,我努力融入同学当中,学习熟悉他们的语境和思维想法。我同多数同学家长有过接触,从中更深入地掌握学生的性格特点,也包括寻求家长的必要配合。我与所有同学做过不止一次的个人交谈,经常是在晚间,很多时候是他们主动找我,谈遇到的各种困惑、自己的想法、志向等,我利用这些机会及时解决了具体问题。在学习上,我组织全班同学开展互帮互学,尤其对几门有难度的专业课程进行“联合攻关”。全班的“数据结构与算法”课程成绩甚至超过了计算机系。

 

几年来,全班团结互助,像一个大家庭,班委会也一再连任,得到全体拥护。到毕业时全部合格,实现了我的愿望。不仅如此,全班的学习成绩在学校的综合评估中优良率达93‰毕业设计都在良以上,有14人获优秀,更有三名同学的毕业论文被评为学院“十佳”论文。学院的第一、三名也都出自我班。34名同学中有22名继续保送本校读研(其中20人仍在本系),4名同学去了大的国企和知名外企工作,8名同学出国深造,在欧、美一些名校攻读博士,其中有一名学生同时拿到了包括哈佛、MIT、CMU、UCLA在内的著名大学的全额奖学金(最后选择MIT)。第一届智能专业学生的良好成绩极大鼓舞了我们,增强了我们办智能专业的信心,也为以后的几届同学做出榜样。

 

几年班主任的经历让我深深地体会到,进入二十一世纪的大学,教书、育人同等重要。要适应新时代年轻人的特点,保持我们民族的优良传统,把人格培养放在首位。能够进入北大的学生都是各地的尖子,当他们聚集在这所著名学府时,首先要调整原来俯视周围的习惯,学会平视甚至仰视其他同学,平和自己的心态,开阔胸怀,树立人生抱负和刻苦努力的决心,这样才能正确对待困难和挫折,才有所作为。班主任的工作往往细致入微,其实是把70%的精力用到30%的人上面。一些学生掉队是否可以避免,关键看班主任的工作是否到位。

 

6 培养体系·本研贯通

 

北大是(文)理科性质的学校,“智能科学与技术”专业也是按理学设置,尽管它更强调学科交叉。从智能科学的内涵来看,我们设立的培养方向更多地是继承自身传统和学校的综合优势,突出“以人为本”的脑认知和与心理生理结合,开展机器感知(视、听、触)和数据转换信息,进而发现知识的机器智能两个方面的研究。同时,我们配合学院的教学指导规划设置课程计划,除了全校的公共必修课程(外语、政治和体育),还有学院的公共平台课。第一年主要是夯实数学、物理和信息类的基础,后三年的专业课程安排是以必修的专业基础和机器感知与机器智能两个方向的专业核心课程为架构。为了强调学生的动手能力,还重点建设了两门实验课程。此外,还利用学校的各种本科科研基金项目(包括大学生创新基金、著政基金、泰兆基金、校长基金)和各个实验室承担的项目来吸引学生,培养他们思考问题的能力,提高他们的研究兴趣,为日后进一步深造打基础。由于绝大多数学生都将读研,这样的安排无疑起到了积极作用,并成为撰写毕业论文的基础。我们还打通了本科高年级与研究生一年级的课程,利用各种机会举办研究讲座,如龙星计划、专题报告、国际人工智能远程教学等活动,开阔学生的视野,引导研究方向,调动学生的潜质。从专业特点来看,我们的智能学科更偏向于“软”的一侧,因此也充分利用信息学院,特别是计算机系的各类教学资源来帮助扶持新办专业的成长。

 

我们原有的博士、硕士点是计算机应用技术和信号与信息处理两个方向,为了让我们的培养体系更加系统,我们进行了两年的精心准备。2007年底,我们正式向北大研究生院申请增列“智能科学与技术”硕士和博士点。经过必要的论证,最终获得批准,及时衔接第一届本科毕业生升研。至此,本、硕、博一以贯通,作为计算机科学与技术下的二级学科,一个完整的智能科学技术专业培养体系建立起来,从培养体制上保证了新兴智能专业的顺利发展。

 

7 特色专业·教学团队

 

五年来,北京大学智能科学技术本科专业从酝酿到创办,可谓初见成效,走过了颇具挑战的历程。除了确定具有特色的培养目标和方向外,还需要扎扎实实落实每一个环节,并在实践中检验。本科教学迥异于研究生培养,它的计划性、按部就班执行的严格性以及每堂课程的内容安排和效果评估必须一丝不苟。

 

信息学院秉承了北大的优良传统,对这个新办的专业给予了巨大支持和关怀,使我们能迅速成长起来。我们从一开始就有一套严格的课程设置审核程序、教案检查制度和新教师上岗准入的试讲考核手续。学院有一支由经验丰富的退休教师组成的督导组,随堂听课评估每一位教师的讲课内容、方式和教学效果,及时纠正问题。作业批改和试卷出题也都有严格规定。在课程体系的建设方面,信息学院打通了一年级的公共部分,深化和夯实了数理基础。

 

在专业课程上,智能科学系提炼了三个课程群,并组织教师进行重点建设。此外还加强对学生动手能力和独立思考解决问题能力的培养。

 

除了在专业上实施分流培养外,我们还针对北大学生的特点,在基础课采用实验班的A、B分级组合方式,满足不同专业对各自基础培养的要求。在专业课程群中,也允许不同兴趣的组合选择,充分发挥和提升学生的能力。为了更好地关怀学生顺利成长,我们除规定教授担任班主任外,还设立了本科生学术导师制,加强对学生的各种指导。智能科学系也注重师资队伍建设,引进了一大批(半数以上)优秀的年轻教师,其中信息学院中从国外回来的教师比例是最高的,为这一新兴学科注入了最具活力和新思想的力量。在招聘教师时,教学需求和能力成为评价的重要指标。

 

2007年,我们接受了教育部的学科评估,新办专业得到好评。。我们的培养体系和人工智能双语教学也分获北京大学的教学一、二等奖。

 

8 结语·致谢

 

尽管北大年轻的“智能科学与技术”本科专业建设初见成效,但征程是漫长的,我们还会面临更多的挑战和问题。然而,智能科学这个本科专业方向是很有希望的,它不仅吸引了大学的新生,也在高考人群中产生着愈加重要的影响,它的健康发展需要大家共同的努力和精心培植。每所大学都有不同的特点,我们应该从学校、师资、方向、生源以及学科培养性质和目标等条件出发来建设新兴专业。以上是笔者对北京大学第一个“智能科学与技术”本科专业创建历程的回顾,希望与同行共享。

 

在专业建设过程中,许多人给予了热情帮助和支持。这里要特别感谢北大信息学院陈徐宗教授,感谢中国人工智能学会涂序彦和王万森教授。

 

最后引龚定庵一句名言:“但开风气不为师”。

 

9 总结与展望

 

本文介绍了厦门大学智能科学与技术系在学科发展、科学研究和人才培养方面的基本建设情况。我们希望这些初步的工作总结能对目前正积极筹办本专业的兄弟院校起到一定的借鉴作用。

 

“智能科学与技术”专业在我国的发展尚属初级阶段。尽管近几年得到了国内部分高校的重视,但其发展并不是很快,且进一步发展也存在一些障碍。。从长远来看,这并不利于整个学科的发展。希望通过各相关高校的广泛交流和积极配合,“智能科学与技术”专业在国内的发展能更上一层楼。

人工智能教学计划范文4

关键词:智能科学与技术;专业;发展战略;思考;大联合;大发展

1现状分析

我国的智能科学与技术(intelligence science and technology,ist)专业创办至今已有8年历史了。它从无到有,逐步壮大,现在全国已有近20所大学试办这个新专业[1-2]。应该说,智能科学与技术专业的8年征途并不平坦,开拓者们也为之付出了艰辛和心血。现在,我们至少可以说,智能科学与技术专业已再不是“婴儿”,而是“小学生”了。然而,我们需要继续努力,上好中学、大学以及研究生课程,迈上专业建设的新征途,攀登学科建设的新高峰。

在ist专业建设上,北京大学信息科学技术学院等起了重要的带头作用,中国人工智能学会及其教育工作委员会等工作委员会和专业委员会发挥了很好的组织作用[3-4]。他们齐心协力,默默奉献,做了大量有目共睹的开创性工作,值得充分肯定。现已有北京大学、首都师范大学、北京邮电大学、南开大学、西安电子科技大学等高校培养出ist专业的毕业生。也就是说,我们有了ist专业的第一代“产品”了。然而,我们的ist专业还是有些不尽人意之处,特别是发展速度比预料的要慢,发展规模不如预期的大,发展目标还有待进一步明确。笔者试图概括我国ist专业发展的喜与忧,探讨发展战略,为ist的专业建设和学科发展出谋献策,供同行讨论与参考。

2喜忧参半

如上所说,我国ist专业的发展既取得可喜成果,又存在某些忧虑,即喜忧参半。下面拟就ist专业的办学成绩和存在问题进行探讨。

2.1主要成绩

归纳起来,8年来,我国ist专业建设取得的主要成绩包括下列各点。

1) 申报并获准试办ist专业,促进信息科学和智能科学的发展,为国内外信息科学学科建设开辟了一个新的增长点。

2) 在调查研究和科学分析的基础上,制定了ist专业教学大纲和教学计划,为专业建设建立了基本框架[5-6]。

3) 结合ist的专业特点和教育发展要求,初步规范了ist专业课程设置,开展专业建设和课程教学等方面的改革,取得一大批成果[7-8]。

4) 编写了一批具有明显特色的相关教材,为新专业教学和学科建设提供必要的资源,起到较好的示范和辐射作用[7,9]。许多学校在实验教学上进行了一些探讨,并积累了不少经验,值得推广与借鉴[10-12]。

5) 聚集了一群有志于智能科学技术教育的教师,形成了一支热爱教育、乐于奉献、熟悉业务的师资队伍,为ist专业的人才培养和学科发展打下重要基础。

6) 经常组织本专业的教育与教学研讨会和座谈会,进行全国性或校际间的交流,总结心得体会,共同提高,使ist专业沿着正确的方向发展。

7) 培养出一批基本掌握智能科学技术基础理论和专门知识,具有从事本专业工作能力的本科毕业生,为国家输送有特色的急需的建设人才。

8) 为争取我国智能科学与技术一级学科博士学位授予权做了大量工作,并取得重要进展,为ist学科的进一步发展创造重要条件[13]。

2.2瓶颈问题

概括地说,ist专业建设和发展面临的问题主要涉及如下几点。

1) 专业规模和发展速度没有达到预期结果,仍停留在“试办”状态。

到目前为止,全国试办ist专业的学校已近20所,已初具规模,“闪亮登场”[2]。然而,本专业的规模和发展速度不尽人意,离“大发展”的预期结果尚有较大差距。

2) 办学主体存在一定的局限性,缺乏跨学科大联合的氛围。

如前所述,北京大学和中国人工智能学会等对ist专业建设发挥了重要的带头和组织作用。由于ist专业具有高度跨学科等重要特点,单纯依靠某一两个现有专业来“派生”和由一两个学会来“催生”ist新专业,是难以快速发展和如愿以偿的。现有专业或学会都有一定的局限性,与其他学会间的交流合作也需要有改进之处。

3) 教学大纲与《国家中长期教育改革和发展纲要》要求存在差距,有待更新。

。《纲要》中许多新思路是我们以前没有想过的。ist的教学大纲需要按《纲要》的要求进行大刀阔斧的修订,力求符合《纲要》精神。

4) 实验教学和网络教学亟待加强。

在新专业建设初期,实验室建设投入经费有限,这对开展实验教学有些不利影响。一些学校的实验未能满足ist专业各课程教学的基本要求。

5)ist专业的产学研结合模式急需探讨与建立。

产学研结合是高等教育的一项经验。《纲要》也强调“创立高校与科研院所、行业、企业联合培养人才的新机制”对本科生教育的重要性。虽然有许多企事业行业适合ist专业就业,但该专业不像机电、化工、通信、冶金等专业那样有比较对口的实习和就业企业。因此,探讨与建立ist专业的产学研结合模式,也是一项比较艰难的急需解决的问题。

3发展策略

1) 树立“大智能科学技术”思想,突破单个学会的局限性,通过大联合、大合作,实现大团结、大发展。

一个专业要在全国产生较大影响,发挥该专业的特有作用,没有足够大的规模是不行的。例如,自动化、计算机、通信、电子信息等专业,全国有数以千计的大学开设。我们是否可以设定ist专业发展规模的第一个目标,即争取在5~10年内,有50~100所大学开设该专业?如果能够实现这个目标,ist专业就走上了“可持续发展”的大道。到那时或者更早一些时日,“试办”也就必然被“正办”所取代。

值得指出的是,目前大多数大学强调“办学资源有限”,不大愿意支持申报新的专业,这对ist专业的发展也产生一定的负面影响。我校的ist专业就是经过3年努力,才向国家教育部呈交《高等学校增设专业申请表》的。

我们需要把圈子搞大些,进行跨学科的大联合,集思广益,合作共赢,谋求ist专业的发展大计。基于中国人工智能学会(caai)的学科特色,由caai牵头组织申报ist专业及其一级学科博士学位授予权,是顺理成章的。同时,单个学会也有局限性,虽不能说是“势单力薄”,但力量不如合作的强大。提倡和实现多学会联合举办智能科学技术教育教学研讨会,以及多学科联合申报与建设ist专业,将克服原有局限性,并以大联合促进大发展,应视为一种可行策略。。

2) 再接再厉申报一级学科博士学位授予权,力争获得批准。

在全国同行及多个学会有代表性的专家建议和支持下,中国人工智能学会及其教育工作委员会积极组织一批有识之士,从事“智能科学与技术”博士学位一级学科授予权的论证和申报工作,并取得重大进展。由于一些原因,申报工作在最后阶段未获通过与批准,需要大家继续努力。“智能科学与技术”博士学位一级学科授予权的获得,必将为ist专业提供更为宽阔的发展空间,使ist专业攀登新的高峰。

3) 申报成立“高等学校智能科学与技术教学指导委员会”,并争取改“试办”为“正办”。

目前,国家教育部的专业设置分为“一般”专业和“试办”专业两种。绝大多数专业属于“一般”专业,只有少数专业为“试办”专业。顾名思义,“试办”者为“试验办学”,经过一定时间的试验后,成功者就可“转正”为一般专业;不成功者就可能被取消“试办”资格。当务之急,是要把“试办”的ist专业办好,办出水平,办出特色,力争早日去掉“试办”帽子。同时,作好必要和充分的准备,尽早向国家教育部申报成立“高等学校智能科学与技术教学指导委员会”,以便得到教育部相关部门的更多指导,并通过“教指委”与兄弟专业交流,更好地学习兄弟专业的办学经验。

4) 高标准严要求,全面修订ist专业的教学大纲和教学计划,以适应国家对智能科学和智能自动化高层人才的需要。

《纲要》中提出的“优化学科专业、类型、层次结构,促进多学科交叉和融合”;“重点扩大应用型、复合型、技能型人才培养规模”;“促进高校、科研院所、企业科技教育资源共享,推动高校创新组织模式,培育跨学科、跨领域的科研与教学相结合的团队”以及“促进科研与教学互动、与创新人才培养相结合”等思想和教改措施,对于我们转变办学观念和进行教学改革都具有很强的针对性。。各校在修订专业教学大纲和教学计划时,要注意保持不同学校的共性与本校的个性特色。

5) 树立精品意识,创建更多的精品课程,编写富有特色和体现创新的ist各类教材。

由于办学历史较短,办学规模较小,ist专业的教材建设远未达到精品境界。。我们一定要对ist专业的精品课程建设及其教材建设,包括基础教材、专业基础教材、专业教材和实验教材等给予高度重视。

6) 下大力气加强实验教学和网络教学。

。无论是学习和深入理解课程的基本理论知识,还是培养学生的实际动手能力,都离不开实验教学和网络教学。我们可以把网络教学看做是一种更加先进的实验教学,它对学生提出了更高要求,能够让学生获取更多的知识,获取更强的能力。

在新专业建设初期,实验室建设的投入经费有限对开展实验教学有些不利影响。为了解决这个问题,我们一方面要因地制宜地设计好实验项目,充分发挥有限的实验室建设经费的作用,尽可能开设出本专业教学急需的实验内容;另一方面要积极利用其他“传统”专业实验室或公共实验室,以弥补现有ist专业实验室的不足。

建设与发展智能科学与技术专业,还有许多需要考虑的问题,如建设一流教师队伍、转变教学观念、改进教学方法、改善教学管理、探索产学研结合模式、加强校际交流与合作等。这些问题也是十分重要的,都是ist专业发展值得思考的内容。

4结语

我国智能科学与技术学科建设和专业建设已取得可喜成绩,但与整个学科和专业的长远发展目标相比,仍存在较大差距和不少问题。如果能够突破现有中国人工智能学会和智能科学与技术专业的局限性,树立智能科学技术大学科思想,实现更广泛的大联合,并采取切实措施扩展智能科学与技术专业,我们的学科和专业就有望获得更快的发展。

一级学科博士点对于学科的发展至关重要。我们要群策群力,集思广益,继续申报智能科学与技术一级学科博士点授予权,并在申报过程中最广泛地团结相关学科和学会的专家学者,争取理解与支持。

上述两方面是相辅相成的关键问题,需要我们转变观念,树立本专业的科学发展观。如果在这两方面

能够取得突破性进展,那么专业发展的其他问题,如改变专业“试办”为“正办”、申报成立智能科学与技术专业教学指导委员会、贯彻执行《国家中长期教育改革和发展纲要》以及课程与教材改革等,就可能迎刃而解。

只要我们再接再厉,团结一心,求真务实,科学发展,我们的ist专业就一定能够越办越强,越办越好,办成有特色、有影响的专业,办成一流的专业。

参考文献:

[1] 王万森,钟义信,韩力群,等. 我国智能科学技术教育的现状与思考[j]. 计算机教育,2009(11):10-14.

[2] 蔡自兴. 智能科学技术课程教学纵横谈[j]. 计算机教育,2010(19):2-6.

[3] 谢昆青. 第一个智能科学技术专业:回顾在北京大学六年来的创建历程[j]. 计算机教育,2009(11):16-20.

[4] 钟义信. 智能科学与创新教育[j]. 中国大学教育,2006(1):28-30.

[5] 邓志鸿,谢昆青,谭少华,等. 智能科学技术专业建设探索[j]. 计算机教育,2010(19):48-50.

[6] 张彦铎,王海晖,刘昌辉. 地方工科院校“智能科学与技术”专业建设的若干思考[j]. 计算机教育,2009(11):38-42.

[7] 杨鹏,张建勋,刘冀伟,等. 智能科学技术专业课程体系和教材建设的思考[j]. 计算机教育,2010(19):11-14.

[8] 谷学静,王志良,黄晓红.“智能科学与技术”专业课程体系建设的思考[j]. 计算机教育,2009(19):108-111.

[9] 祝长生,王志良.“人工情感”教材建设与教学实践[j]. 计算机教育,2009(11):98-101.

[10] 方勇纯,刘景泰. 南开大学“智能科学与技术”专业教学体系与实验环境建设[j]. 计算机教育,2009(11):21-25.

[11] 彭书华,李邓化. 智能科学与技术实验室信息化建设探讨[j]. 计算机教育,2010(15):100-103.

[12] 陈以,王改云,杨青. 智能科学与技术专业实践环节改革与建设[j]. 计算机教育,2010(15):119-122.

人工智能教学计划范文5

关键词:人才培养;数字媒体技术;课程体系;游戏开发

1 背 景

江苏省政府和南京市把计算机软件产业作为优先鼓励发展的支柱产业,作为新兴战略性产业的重点发展。南京市政府特别重视计算机与信息产业的发展,提出提升规模、企业发展与创新的主要目标[1-2]。早在2011年,南京市委和市政府就提出《关于以打造一谷两园软件产业集聚区为重点高标准建设中国软件名城的意见》,提出将南京建设为中国软件名城的目标,计算机软件产业业务收入预期达到4 000亿元以上,并在2020年初步建成世界软件名城。从软件技术与专业人才培养角度来说,数字媒体技术作为计算机软件产业中的一个重要发展方向,虚拟现实技术与人工智能近年来日臻活跃,越来越显现出发展的活力与潜在的前景。;。

2 数字媒体技术专业预期形成的专业与人才特色

依据数字媒体产业中游戏行业对人才的迫切需求,以学生系统能力培养为主线,以新型应用型工程技术人才为培养目标,将当前游戏开发中的最新编程平台与先进技术引入专业课程体系,按照网络游戏与手机游戏开发工程师的知识和实践能力组织课程的设置,通过计算机图形学、三维建模、移动游戏开发编程、网络游戏开发编程、Unity3D开发引擎的游戏开发技术等专业课程的设置,突出以游戏开发工程师为培养目标的学生实践能力锻炼。数字媒体技术专业依托行业内企业多年的数字媒体产品开发经验与培训能力,进行产教融合与校企合作办学,突出以游戏开发为主的数字媒体技术方向的专业特色,更好地满足人才培养目标定位需求,并为后期工程教育认证打下基础。

3 数字媒体技术专业建设的主要内容

3.1 以游戏开发为主要特色的课程体系建设

。课程的总体分布与关系见表1。

我们多选用新出版的优秀教材,将教材的适用性作为教学过程控制的主要监测点。对于知识更新较快的课程,组织有经验的教师自编教材并及时修订,跟踪反映数字媒体技术产业的新技术、新成果。

3.2 实践实训基地建设

产学研结合的实践教学模式是计算机类专业办学的一大特色[3],学院始终把创建校外产学研实习基地工作放在重要位置,使得学生获得实际的研究、开发、设计的实践教学机会,全方位、系统地培养学生的技术应用能力和创新能力[4]。目前,数字媒体技术专业依托的计算机工程学院,同东软集团股份有限公司、中软国际集团有限公司、南京麦瑞克科技有限公司、江苏万和等多家大中型企业签订了《共建教育实习基地协议书》。通过校外实习基地,学生能够参与数字媒体产品开发过程,在实践中加强学生的实际工作能力[5],从而达到培养综合素质高、创新能力强、富有团队精神的应用型高级数字媒体技术专业人才的目标。学生从第6学期的专业实习、第7学期的工程项目实践与毕业实习参与到学院合作方――南京麦瑞克科技有限公司的研发项目中,专业实习与工程项目实践是数字媒体技术方向的重要教学环节。通过专业实习与工程项目实践,学生能够系统地掌握游戏开发的知识体系和整个流程,以及具体案例的开发过程,锻炼自身的实践动手能力。学生在实训中掌握了企业项目实际管理流程,提高了适应能力。学生以实践开发小组为单位完成相关系统功能与模块设计,撰写相应的策划文档以及开发规范文档,根据设计选择相应的技术进行资源优化和打包,对于系统进行集成开发与部署。开发报告应包含组员角色及分工、系统的分析和设计报告、项目开发流程管理的要点、实践总结等内容,并附有软件系统的完整开发用例源代码。指导教师根据实践的情况,包括实践小组的讲解和演示,总结实践开发的收获、创新与成果。

专业实习是综合性实践环节,通过专业实习可以让学生理解游戏系统的完整开发过程。专业实习涉及游戏UI设计、三维建模、图形处理技术等核心专业基础及专业课程。通过专业实习,学生可以在游戏开发的方法和技术、系统分析与设计、计算机软硬件的配置与管理、虚拟现实开发等方面得到锻炼。通过建模,学生可以完整地理解游戏场景系统开发的整个过程。例如在游戏场景房屋模型制作项目,通过三维建模与一些基本的操作命令,学生可以搭建常见游戏场景中的房屋模型,完成房屋模型制作的工作,为以后制作大型场景打下技术基础。

工程项目实践涉及面向对象程序设计、C#程序设计、移动游戏开发编程、游戏开发技术等核心专业课程。工程项目实践的内容包括联机火线战争、虚拟旅游、跑酷类游戏等综合性游戏开发项目,让学生对游戏的开发流程有详细的了解,熟练使用Unity游戏引擎工具,在游戏的策划―游戏的界面交互设计―游戏的开发逻辑―游戏优化―游戏―游戏上传等整个游戏开发全生命周期内进行综合性工程项目实践,同时工程项目实践有利于培养学生的书面表达能力、全面策划思考能力、自主学习能力、需求研发能力和探索创新能力。

3.3 合作办学

2016年起,金陵科技学院计算机工程学院与澳大利亚昆士兰理工学院(QUT)合作,采用“2+2”联合培养模式,共同培养数字媒体技术专业的本科人才。QUT课程体系采用CDIO工程教育思想,着重锻炼学生的综合素质和能力。自2016年开始学院在数字媒体技术专业人才培养方案中嵌入NIIT(National Institute of Information Technology,印度国家信息技术学院)课程模块,培养具备国际视野的数字媒体技术专业人才。2016年数字媒体技术专业的计划招生人数为40人,班级为正常教学班,不单独针对国外学习而组班。在新生入学教育时,鼓励学生通过雅思考试,在大学三年级申请去昆士兰理工学院深造。数字媒体技术的人才培养借鉴了澳洲高等教育教学的先进模式和成功经验,包括外方优秀的教学形式、考核方式及评估标准。合作教育将由引进外方优秀教师与中方资深教师共同完成。在大学一年级下学期做雅思考试动员,相应的英语课程引导学生进行雅思综合英语、雅思口语、雅思读写、雅思听说、英语语言和文化、学术英语课程的学习,为雅思考试做好准备。通过雅思考试的学生可以申请出国学习,国外第二阶段的专业课学习将采用全英文学习。通过国外的系统学习,学生将全面地掌握网络游戏、手机游戏、虚拟现实等数字媒体相关的基本理论与方法,能综合运用所学知识与技能去分析和解决数字媒体领域的实际问题,同时拥有专业和外语双重素质,成为富有责任心和创新能力的国际化应用型优质人才。出国的学生完成昆士兰理工学院后两年的专业课程学习,毕业时将获得双学位证书。未出国的学生按照教学计划继续完成国内的学业,毕业时将具有较强的计算机技术应用能力,能熟练使用常见游戏开发及虚拟现实软件,掌握信息检索、文献检索、资料查询的基本方法,具有独立获取知识、较强的综合分析与管理的能力及一定的科学研究能力。

昆士兰理工学院数字媒体技术专业的8门专业基础课为:Programming for Visual Design、Real-time 3D Computer Graphics、Data Structures and Algorithms、Databases、Computer Games Studies、Virtual Environments、Software Development、AI for Games。我院数字媒体技术专业大一、大二的教学计划中与之对接的课程是:视觉设计编程、实时3D计算机图形学、算法与数据结构、数据库系统原理、计算机游戏基础、三维建模、面向对象程序设计、游戏开发中的人工智能8门课。由于这8门课程基本为专业基础课,因而数字媒体技术专业大一、大二的教学计划对于国内和准备去国外学习的学生而言都通用,可以做到跟后续专业课程的无缝对接。在教学计划中,我院上述8门课程使用昆士兰理工学院的教材、课件等教学资料,按昆士兰理工学院的要求完成教学任务。视觉设计编程(Programming for Visual Design)课程以C#课程为切入点讲授数字娱乐产业涉及的编程技术;三维建模(Virtual Environments)主要讲解三维建模内容;游戏开发中的人工智能(AI for Games)以讲解游戏算法为主。将国外实时3D计算机图形学、游戏开发中的人工智能、视觉设计编程、三维建模与实时渲染技术等最新的课程逐步地引入我院数字媒体技术专业的教学体系,不断促进专业水平的提高。

4 结 语

实践证明,我校数字媒体技术的人才培养计划的实施,进一步完善了应用型工程型本科人才培养体系,国内IT企业能深度地参与本专业的人才培养,校企融合共同培养适应“长三角”地区数字媒体技术的人才;同时,通过国际合作开阔了学生的视野,为南京以及长三角的游戏产业高层次的软件开发人才培养打下基础。我校数字媒体技术专业将强调对游戏开发能力培养,注重从游戏算法的角度解决游戏开发中遇到的实际问题。今后我们将进一步精选企业课题,将课题与学生工程项目实践、毕业设计高度结合,实现学生实习到就业的无缝对接。

参考文献:

[1] 张燕, 史金芬, 沈奇. 改革教学模式培养高素质软件人才[J].金陵职业大学学报, 2003, 18(4): 18-20.

[2] 刘钰, 张燕, 沈奇, 等. 卓越工程师计划下的嵌入式软件人才培养[J]. 计算机教育, 2014(9): 48-51.

[3] 沈奇, 张燕, 罗扬. 应用型本科实践教学体系的构建及改革[J]. 实验技术与管理, 2010(12): 39-41.

人工智能教学计划范文6

[关键词]:智能教学 多媒体 特点 设计方法

在当前,计算机技术发展引起的智能化普遍应用的情况下,深入探索智能教学环境下的教育理念、教学模式和教学方法,充分利用现有信息技术成果,研究更加先进的智能网络教学模型,不仅可行,而且也是智能网络教学系统研究、开发和应用中的一项重要内容。文章拟主要分析当前智能化教学系统的特点与设计方法。

一、智能化教学系统的特点

智能教学系统是以认知科学为理论基础,综合利用人工智能技术、教育心理学、计算机科学等多门学科的成果而形成的一种对学生实施有效教学的技术。系统的智能性主要表现为能够实现“一对一”的教学,这种教学模式被誉为是最有效果的教学方式。。(2)在学生开始学习某个知识之前,指导教师能够为他设计一条从最基础知识到某一个具体知识的学习路径。(3)在教师和学生的交互过程中,教师能够了解潜在的探测此学生所具有的学习风格,并且提供风格匹配的教学材料给学生进行学习。

基于以上的实践经验以及人工智能技术,设计和开发一个基于计算机的智能教学系统来模拟人类教师的教学方式和行为已经成为可能,并且很有前景。使用具有智能性的智能教学系统,将可以有效地弥补其教育教学上的缺陷和不足,改善学生的学习效果,提高教学效率,对教育具有极大的推动作用。

二、智能教学系统的设计方法

1.智能教学系统的设计原理

进行科学的教学系统设计,必须从了解学习的发生机制和学习的本质问题入手。教学系统设计,是架设于学习理论与教育教学实践之间的一座桥梁。纵观教学系统设计的发展轨迹,可以清晰地看到学习理论对教学系统设计的影响最为深刻。每一次学习理论的发展,都必然为教学系统设计带来巨大的触动和冲击。学习理论的发展大致可以分为行为主义学习理论、认知广义学习理论、建构主义学习理论和人本主义学习理论等,所以相应地出现了基于行为主义的教学系统设计理论、基于认知主义的教学系统设计理论、基于建构主义的教学系统设计理论和基于人本主义的教学系统设计理论。

2.智能教学系统的的主要功能

智能教学系统关键在于能够对学习者的学习效果进行检验并能够给出相应的学习建议,从而实现学习过程的智能化。主要功能包括:

(l)建立教学内容的智能知识库。根据不同的教学内容,按知识体系结构进行知识点的划分,并建立学习要素的数据库。

(2)对学习过程进行评价。学习效果是学习质量的重要标志,学习过程包括在线学习、在线练习、在线测试、实践教学,收集学习过程信息,进而对学习效果进行合理评价。

(3)学习指导和建议。根据学习情况给出学习效果评价,然后根据学习效果给出学习指导和学习建议,从而使学习过程具有更强的针对性,以达到提高学习质量的目的。

(4)学习导航。及时收集学生的应答信息,并加以分析处理,评判学生的成绩;为不同的学生选择不同的教学内容,将学生不具备学习条件的知识过滤掉;帮助学生分析错误原因,判断并标示出学生当前最需要学习的知识点,提供针对性的个别辅导和适当的补充材料。

(5)教学方法。允许学生用自然语言与计算机导师进行交流,这样就突破了传统的学法指导和教法,并且教法还可以针对特定学生进行,即“一对一”教学模式。

3.智能教学系统的组成

(1)领域模型。存放传授给学生的课程专业知识,还能生成问题,提供对问题的正确解答以及求解问题的过程。领域模型一般包含两方面的知识:一是有关课程的内容,二是有关应用这些知识来求解问题的知识,即过程知识。知识表示方法有语义网络、规则等。

(2)诊断模型。利用诊断规则来分析学生的响应,判断学生己经懂得的知识或学生产生的错误概念,并传递到学生模型的当前状态中去。

(3)学生模型。准确反映学生的知识水平、学习能力等,为系统实现个别化教学提供依据。

(4)教师模型。结合教学策略和课程结构方面的知识,为学生选择问题供他们解答,监督和评价他们的行为,当学生需要时为他们选择适当的补习材料。教师模型中,交叉和解释模式以及学生模型是实现“面向个人以交互方式进行教学”的具体手段。教师模型中采用的教学策略主要有诊断或排错法、苏格拉底法、教练法等。

(5)人机接口。人机接口作为学生与系统之间交流信息的媒介,它所提供的表达知识和信息的手段必须是学生熟悉并便于使用的。

4.智能教学系统的使用

学生使用教学系统进行学习活动时,可以自己选择学习内容,也可以在教师模型的作用下由系统引导进入某一教学单元。教师利用测试结果,通过诊断模块和诊断规则来判断学生当前的认知能力,通过学生的总体认知能力来决定学生下一步的行为。

(1)教学诊断模块。主要负责判断学生对某一知识点的掌握情况,进而能判断学生的当前知识水平,为判断学生的认知能力提供依据。

(2)能力测定模块。主要负责评价学生的学习能力。在教学之前、教学期间和教学之后都要进行。通过评价取得反馈信息以修正、完善教学计划,为教师模型制定正确的教学策略提供条件,保证教学的顺利完成。它是本系统的重要部分。

(3)学生行为评定。对学生行为的评价,依据评价的目的不同,分绝对评价和相对评价两种方法,系统中以教学目标为基准进行绝对评价,以掌握学生达到教学目标的程度和诊断学生知识、能力结构中的缺欠,即根据专家知识库中的测试题目信息及学生的回答情况,给出分析结果及相应各认知能力不同层次的分数比重,为制定相应的教学策略提供数据依据。

(4)试题评定。主要是对试卷的要求进行综合评价,包括学生测试的内容是否是学习过的,是否符合教学大纲的要求,试题分数的比例是否符合难度比例、认知层次比例和各章节的分配比例。

(5)教学内容生成。系统根据学生的认知能力、当前的知识水平和学习历史,利用教学策略生成个性化教学内容。

三、结语

智能教学系统能监控学生的学习过程,实现教学各环节的知识共享与交互,从而实现学生的按需学习和教师的因材施教,体现“以学习者为中心”的教学思想。但是,目前的智能教学系统的研究可以说仍然处于基础理论的研究阶段,其主要的研究方法就是将远程教学技术与传统的智能教学系统相结合,运用人工智能技术来更加有效地实现教学的个性化和智能化。

参考文献:

[1]谢忠新,王林泉,葛元.智能教学系统中认知型学生模型的建立[J].算机工程与应用,2005,(3):229-232.

[2]张荣梅,李福亮.基于Agent的网络智能教学系统的研究[J].现代电子技术,2007,(6):83-85.

因篇幅问题不能全部显示,请点此查看更多更全内容