第五章 相交线与平行线
5.1.1相交线
学习要求
1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质. 2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.
课堂学习检测
一、填空题
1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.
2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________
________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________. 4.如图,直线AB、CD相交于O点,∠AOE=90°.
(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角. (2)若∠1=20°,那么∠2=______;
∠3=∠BOE-∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB与CD相交于O点,且∠COE=90°,则
(1)与∠BOD互补的角有________________________; (2)与∠BOD互余的角有________________________; (3)与∠EOA互余的角有________________________;
(4)若∠BOD=42°17′,则∠AOD=__________; ∠EOD=______;∠AOE=______. 二、选择题
6.图中是对顶角的是( ).
7.如图,∠1的邻补角是( ).
(A)∠BOC (B)∠BOC和∠AOF (C)∠AOF
(D)∠BOE和∠AOF 8.如图,直线AB与CD相交于点O,若
AOC13AOD,则∠BOD的度数为( ).
(A)30° (B)45° (C)60°
(D)135°
9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).
(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60° (D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误
10.如果两个角相等,那么这两个角是对顶角.
( )
11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( )
12.有一条公共边的两个角是邻补角.
( ) ( ) ( ) ( )
13.如果两个角是邻补角,那么它们一定互为补角. 14.对顶角的角平分线在同一直线上.
15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.
综合、运用、诊断
一、解答题
16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.
18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求
∠AOF的度数.
19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,
只能站在墙外,请问该如何测量?
拓展、探究、思考
20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与
∠BOD是否为对顶角,并说明你的理由.
21.回答下列问题:
(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?
(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?
(3)m条直线a1,a2,a3,…,am-1,am相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?
因篇幅问题不能全部显示,请点此查看更多更全内容