您的当前位置:首页正文

ABSTRACT IntelliShopper A Proactive, Personal, Private Shopping Assistant

2021-10-20 来源:客趣旅游网
IntelliShopper:

AProactive,Personal,PrivateShoppingAssistant

FilippoMenczer

filippo-menczer@uiowa.edu

W.NickStreet

nick-street@uiowa.edu

DepartmentofManagementSciences

TheUniversityofIowaIowaCity,IA52242

NarayanVishwakarma

nvishwakarma@yahoo.com

DepartmentAlvaroE.Monge

ofCECSCal.StateUniv.LongBeachLongBeach,CA90840monge@cecs.csulb.edu

ABSTRACT

TheIntelliShopperisashoppingassistantdesignedtoem-powerconsumers.Itisapersonalassistantinthatitob-servestheuserswhileshoppingandlearnstheirpreferenceswithrespecttovariousfeaturesthatcharacterizeshoppingitems.Itisproactiveinthatitrememberstheusers’requestsandautonomouslymonitorsvendorsitesfornewitemsthatmightmatchtheusers’needsandpreferences.Finally,itprotectsusers’privacybymeansofpseudonymity,IPanony-mizing,andtrustedfiltering.Pseudonymityisachievedthroughtheuseofpersonae;weshowthatthisapproachalsobehoovessuccessfulclassification.IPanonymizingcanbeperformedinatleasttwomanners,whichwediscussandcompareinthecontextofourapplication.Trustedfiltering—asopposedtomerchant-basedfiltering—improvespri-vacybyallowinguserstoselecttheirpreferredprivacyrepre-sentative.ThispaperintroducestheIntelliShoppersystem,discussesitsarchitectureandcomponents,describesaproto-typeimplementation,andoutlinespreliminaryevaluationsofitsperformance.

CategoriesandSubjectDescriptors

K.4.4[ComputersandSociety]:ElectronicCommerce;I.2.11[ArtificialIntelligence]:DistributedArtificialIn-telligence—Intelligentagents,Multiagentsystems;H.3.4[In-formationStorageandRetrieval]:SystemsandSoft-ware—Userprofilesandalertservices;H.3.3[InformationStorageandRetrieval]:InformationSearchandRetriev-al—Informationfiltering,Relevancefeedback;E.3[DataEn-cryption]:Publickeycryptosystems

Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.

AAMAS2002,July15-19,2002,Bologna,Italy.

Copyright2002ACMX-XXXXX-XX-X/XX/XX...$5.00.

MarkusRSALaboratoriesJakobsson

20CrosbyDriveBedford,MA01730

mjakobsson@rsasecurity.com

Keywords

Shopping,Pro-activity,Monitoring,Personalization,Learn-ing,Privacy

1.INTRODUCTION

E-commercehaschangedthewaycompaniesdistributetheirproductsandservicestoconsumers.Traditionalbrick-and-mortarcompaniescontinuegrowingthissegmentoftheeconomybycreatingtheirowne-commercepresence.Somecompanieshavecreated(orreshaped)theirimagebyhavingtheirentireoperationsbasedstrictlyone-commerce.Ane-commercestrategyhasmanybenefitsforthecompanyaswellastheconsumer.Intheresearchpresentedhere,weaimatimprovingtheaccessibilityandexpandingthebenefitsofe-commerceshoppingtoconsumersandataidingthemovetoapersonalized(andthusmoreefficient)marketplace.Thesuccessofe-commercehasresultedinproblemsanal-ogoustothoseearliercreatedbythegrowthandpopularityoftheInternet.Searchengineswereanearlysolutiontotheproblemoffindinginformationspreadoutovermanydiffer-entWebsites.Similarlynow,ashoppermustsiftthroughtheinformationprovidedbyinnumerablee-commercesites.Thistaskisadifficultoneasthetype,amount,andorga-nizationoftheinformationprovidedone-commercesitesdiffersfromcompanytocompany.Complicatingmatters,acustomergoesunawareofchangesinpricing,availability,etc.unlesssherevisitsthesitesveryfrequently.

Currentlythereareanumberofapproachesthatshop-perscantakewhenseekingtofindaproduct.Thefirstandmoststraightforwardapproachisfortheshoppertomanuallyvisitvariouse-commercesites;foreachsite,theshopperbrowsesand/orsearchesfortheparticularproductofinterest.Thissimpleapproachhasseveraldrawbacks.Foronething,thereisnosinglesitethatcaterstoallshop-pingneeds,whichincreasesthe(user)searchtimeforeachnewproductcategory.Also,itinvolvesgettingacquaintedtonewinterfaces,slowingdowntheuserbrowsingandhin-deringimpulseshopping.Finally,itisanapproachlikelytofavoronlythelargestvendors(duetoname-branding),

whichinturnreducestheeffectivenessofthemarket.

Asecondapproachincreasesthedegreeofautomatizationbysite-providedalertservices.Severalservicesallowshop-perstosignuptoreceivepricealertsthatnotifyashopperwhenthepriceofaproductchangesorfallsbelowaspec-ifiedamount.Someoftheservicesrequirelengthysurveystobefilledout,whileatthesametimemostprovidelittletonopersonalization.Afurtherdrawbackofthisapproachistheweakeningofuserprivacythatitimplies.

Athirdproposedapproachinvolvesvoluntaryratingsandreviewsofvendorsandproductsbyusers,andthecompila-tionofsuchinformation[9].Asinthepreviousapproach,suchrecommendationsystemsarelikelytoreducethesizeofthemarketplaceandtointroducebias,asitisdifficulttoobtainasufficientnumberofratingsforeveryexistingvendor,andtocontrolthereliabilityofthesources.

Finally,afourthgeneralapproachistofurtherautomateandgeneralizethesearchprocess[11,7].Asearlyas1995,shoppingagents(alsoreferredtoascomparisonshoppingagents)wereproposedasasolutiontofindaproductunderthebestterms(wherepricewasthemostimportantfea-tureearlyon)amongdifferente-commercesites.Ashop-pingagentqueriesmultiplesitesonbehalfofashoppertogatherpricingandotherinformationonproductsandservices.Mostofthesecomparisonshoppingagentshow-everpresentamarketplacethatisbiasedinfavorofthee-commercesitesthatcollaboratewiththeshoppingagent.Inadditiontothebiasedmarketplace,ashopperhasonlyalimitednumberofe-commercesitestochoosefromandoftentheparticipatingsitesdonotofferthebestprices.Weproposeanewtypeofshoppingagent,calledIntel-liShopper,thatextendstheaboveapproachesbyprovidingtheuserwithautonomy,personalization,andprivacy.

Autonomyreferstotheideathatashoppingagentcanprovidethebestpossibleservicebyremainingasindepen-dentaspossiblefrombothcustomersandvendors.Au-tonomyfromvendorsimpliesthattheserviceistoremainunbiasedbyperformingwidesearches(asopposedtoonlysearchingthedatabasesofafew“preferred”vendors).Thiscanbeachievedbyprogressinmakinginterfacesmoreuni-form,andbyimprovedmethodsforinterpretingpotentialhits.Autonomyfromthecustomermeansthatuserscanberelievedfromthetedioustaskofsearchingforinformationandofneedingtoadjusttodifferente-commercesites.Fur-thermore,ourshoppingagentproactivelymonitorsvendorsitesonbehalfoftheuser,notifyinghimofnewproductsofpotentialinterest.

Personalizationmeansthattheshoppingassistantstrivestolearntheuserbehaviorsandpreferencesbyobservinghisactionswhileshopping.Whenauserconsiderstheitemsavailableate-commercesites,heindirectlyprovidesfeed-backbyclickingonitems.Theagentcaninternalizethisfeedbacktoinferuserpreferencesandapplysuchlearnedknowledgeintakinginitiativeaboutfuturesearches,aswellasinpredictingwhenausermightbeinterestedinanitem,sothattheusercanbenotified.

Finally,ourresearchaddressestheprivacyoftheshopperbyconcealingtheidentityandbehavioroftheuserinava-rietyofways.However,wenotethattheprivacyprovidedisconditional,andshouldbeselectivelyrevokedifabuseissuspected.Thepersonalizationandprivacyaspectsofourproposedagentprovideforanunbiasedpersonalizedmar-ketplacewheretheuserbenefitsinmanyrespects.

2.BACKGROUND

ResearchintheareaofshoppingagentsdatesbacktotheearlyyearsoftheWeb.In1995,AndersenConsultingdevel-opedBargainFinder,thefirstoftheshoppingagents.Ital-loweduserstocomparepricesofmusicCDsfromstoressell-ingovertheInternet.Atthetimehowever,someofthere-tailersblockedaccessbecausetheydidnotwanttocompeteonprice,andBargainFinderceasedoperation.Sincethen,therehavebeenadditionalshoppingagentsthatstartedpro-vidingunbiasedcomparisonofproductsfromdifferentshop-pingsites.InPersonaLogic,userscreatedpreferenceprofilestodescribetheirtastes.Theapproachallowedfortheiden-tificationofproductswithfeaturesimportanttotheusers,butthevendorshadtoprovideaninterfacethatexplicitlydisclosedthefeaturesoftheproductsinawaythatcouldbematchedwithuserprofiles.PersonaLogicwasacquiredbyAOLin1998andthetechnologydisappeared.

Ringowasanagentthatrecommendedentertainmentprod-ucts(music,movies)basedoncollaborativefiltering,i.e.,onopinionsoflike-mindedusers[3].Thiswasoneoftheearli-estsoftwareagenttechnologiestobecommercialized,whenitwasincorporatedintoacompanynamedFireFly.FireFlyalsoaddressedtheissueofprivacybyinitiatingandpromot-ingtheP3Pstandard.FireFlywasacquiredbyMicrosoftin1998andtheFireFlyagentceasedoperationshortlythere-after.Howevertheconceptofcollaborativefilteringhasbe-comewidelyused,including—insimplifiedways—bylargecommercialvendorssuchasAmazon.

TheShopBotwasanagentthatcouldlearnhowtosub-mitqueriestoe-commercesitesandinterprettheresultinghitstoidentifylowest-priceditems[4].ShopBotautomatedtheprocessofbuilding“wrappers”toparsesemistructured(HTML)documentsandextractfeaturessuchasproductde-scriptionsandprices.Ourgoalsaresimilarbutwefocusonlearningtheuserpreferences(withrespecttomanyfeatures)andweuseadifferentapproachforextractingthosefeaturesfromvendorsites.TheShopBottechnologyhadasimilarfatetothoseofPersonaLogicandFireFly;itwasacquiredandcommercializedbyExcite(underthenameJango),andsoonreplacedwithabiasedvendor-drivenagent.

Tete@Tetewasanagentthatintegratedproductbroker-ing,merchantbrokering,andnegotiation[15].Astart-upcalledFrictionlessCommerceisapplyingthetechnologytoB2Bmarkets(e-sourcing)ratherthantoB2Cmarkets.Theonlycomparisonshoppingagentsavailabletoconsumersthataresurvivinginthecommercialrealmarebiased,pre-sentingresultsonlyfromcompanieswithwhomtheycollab-orate.ExamplesincludeMySimon,DealTime,PriceScan,RoboShopper,andmanyothers.

Learninguserbehaviorsandpreferencesby“lookingovertheuser’sshoulders”isanexampleofaninterfaceagent.ThesehavebeenwidelyemployedininformationfilteringandInternetrecommendationsystems[14].Twouserinter-faceagentsthatlearnedfromtheactionstakenbyauserareLetizia[12]andWebWatcher[10].Similarlytotheseagents,IntelliShopperpresentsinformationtotheuserinawaythatallowsherinteractiontobeeasilyincorporatedintothelearningprocess.

IntheareaofWebqueryingandmonitoring,themostrelevantworkisWebCQ[13].InWebCQ,specificpagescanbemonitoredforchangestotheircontent.Thesystemcantrackchangesonarbitrarypagesbycomputingthediffer-encebetweenthepageatsomegiventimeandthesame

pageatalatertime.MorerecentlyresearchhasbegunonthemonitoringofXMLdata[17].Here,thestructuringofdocumentsallowsfordatabase-precisionqueries.Inthisparticularwork,thefocusisonthearchitectureofascalablesystemthatsupportsthemonitoringofmillionsofpagesperdayservingmillionsofsubscriberstothemonitoringservice.Avarietyofwell-knowncryptographictechniquesareap-plicabletopreservetheprivacyofonlineshoppers.Topro-tecttheidentityofusers,atypeofpseudonymcalledapersonacanbeused(see[1]foradiscussionofthetypeanddegreeofprivacyobtainedwiththistechnique).Ananonymizer1(a.k.a.mixnetworkoronionrouter)canbeusedtoobtaincommunicationprivacy,i.e.,tohidetheIPaddressfromwhichrequestsemanateandtowhichresponsesaredirected.Ananonymizerconsistsofoneormoreserverslocatedbetweentheuserandthemerchants;theseserversforwardrequestsandresponses,andanonymizebymeansofpermutation,strippingofIPaddresses,andencryption/de-cryption.Wereferto[9]foradetaileddescriptionofhowtointegratethesetoolsinanarchitecturesuchasours.

Analternativetoanonymizersisthe“Crowds”approach,whichcanbethoughtofasa“buyersclub”forprivacy[18].Inpractice,thisisimplementedbyoneormoreuserspassingeachother’srequestsbackandforthtohidetheiroriginfromarecipient/merchant.Suchanapproachisslightlylesspalpablethananonymizersinanarchitectureliketheoneproposedinthispaper,butisstillpossibletouse.

Analternativetohidingtheidentityandthewhereabouts(IPaddress)oftheusersistohidewhattheyrequest.Inparticular,itispossibletodesignasysteminwhichuserscanaccesselementsofadatabaseinamannerthatmakesitimpossibletodeterminewhatelementswereaccessed[6].However,suchanapproach(naturally)prohibitsthecentralcollectionofstatistics,forcingallthefilteringtobeper-formedbytheuser.Furthermore,thisapproachmakesusermobilitydifficultandcollaborativefilteringimpossible.Wethereforedonotconsidertechniquesofthistype.

3.SYSTEMARCHITECTURE

Figure1illustratesthehigh-levelarchitectureoftheIntel-liShoppersystem.Theprivacyagentallowstheusertotakeonashoppingpersonaandhidesallidentifyinginformationabouttheuser(e.g.,IPaddress,username,andemail)fromtherestofthesystem.Theprivacyagentresidesononeormorecollaboratingservers,locatedbetweentheuserandtheIntelliShopperserver.Itispossibleforseveralprivacyagentstoco-exist,allowingeachusertoselecttheoneinwhichhehasthemostconfidence.Itisalsopossiblefortheusertoemploydifferentprivacyagentsfordifferentfunctions,per-sonaeorrequests.Thisselectioncanbemadelocally,ontheuser’sclient,orbyafirstprivacyagentserverwhosemainfunctionistokeepandmaintaintheselectionpolicies.

InthismodelitisassumedthatthecustomerwillnotconductpurchasingtransactionsviatheIntelliShopper;iftheuser’sprivacyistobeprotectedthroughoutthebuy-ingprocessaswellaswhileshopping,thenaprivacyagent(acceptabletothemerchants)wouldhavetoresidebetweentheuser(ortheuser’spurchasingagent)andthemerchants.Wedonotfurtherdiscussthisissueinthepresentpaper.Ashoppingpersonaisauniqueidentityreflectingthe1

anonymizer.

Seewww.anonymizer.comforacommerciallyproposedprivacymonitoragentMySQLagentShoppingvendorvendorPersonalearningagentmodulesWeb sitesanonymizing serverIntelliShopper serverFigure1:ArchitectureoftheIntelliShoppersystem.LightgrayarrowsrepresentWebinteractionsbasedontheHTTPprotocol.DarkgrayarrowsrepresentSQL-basedinteractions.

modeofuseofaparticularuser.Itspublicdescriptorsarein-dependentoftheowner’sidentity,location,etc.Thepersonabecomesthe“publicuser”seenbytheothercomponentsofthesystem,andcouldevenbedisclosedtomerchantswith-outcompromisingtheuser’sidentity.TheIntelliShoppercanbuilditshistory-basedpreferencedatabasesindexedbythepersonadescriptors,ratherthanbyusernames,IPad-dresses,orbyusingcookiesasiscurrentlydonebycommer-cialnotificationandbrokeringsystems.Thepersonahastwoexplicitpurposes:(i)theprivacyoftheuserisguaran-teed,assumingtheusertruststheanonymizingserver,be-causenoidentifyingpersonalinformationabouttheuseriseverstoredintheIntelliShopperdatabase;and(ii)theusercantakedifferentpersonaefordifferentshoppingneeds,e.g.,“gadgetgeek”vs.“lovingspouse,”andIntelliShoppercanlearnadifferentshoppingprofileforeachpersona.

TheremainingmodulesofthesystemarehostedonthemainIntelliShopperserver.Theyinteractwithusersonlyviashoppingpersonae.Thelearningagenttakesuserre-quests,savesthemonthedatabase,forwardsthemtoonlinevendors,retrievestheresultinghitsfromthelocaldatabase,anddisplaystheresults(rankedaccordingtothepersonaprofile)backtotheuser.Thelearningagentalsoobservestheactionsoftheuser—removing,viewing,and/orbuyingitems—andadjuststheprofileaccordingly.

LogicaboutindividualWeb-basede-commerceandauc-tionsitesisstoredinthevendormodules.Thesespecifyhowtoqueryvendorsandhowtointerprettheresultsandex-tractstructuredinformation,suchasproductdescriptionsandprices,fromtheHTMLpagesreturnedbythevendorsites.Thehitsreturnedbythevendorsareparsed,recordedinthedatabase,andmadeavailabletothelearningagent.Themonitoragentperiodicallyqueriesthedatabasetoretrieveoutstandingqueries,i.e.,shoppingrequestsinwhichtheuserisstillinterested.Atintervalsspecifiedbytheuser,themonitoragentqueriesvendors(viathevendormodules)toseeifnewitemshaveappearedthatmightmatchthepersonaprofile.Thenewhitsarerecordedinthedatabasesothattheusercanbenotified.

Thefollowingsubsectionsillustratethemodelsbehindthelearning,monitor,andprivacyagentsingreaterdetail.Im-plementationissuesarediscussedinSection4.

3.1LearningAgent

IntelliShopperadaptstouserpreferencestobetterrankhitswithcontinueduse.Ourapproachisbasedongath-

Before user clickAfter user clickFeature low avg highFeature low avg highPrice 3.25 1.25 2:75Price 3.25 1.00 3.00Bids ... ... ...Bids ... ... ...Time ... ... ...Time ... ... .........Lavazza Oro 500g vacuum-packed $ 9.05 4 bids 2 days Buy|RemoveIlly Caffe' - imported from Italy $19.95 9 bids 5 min Buy|RemoveFolgers American Coffee $ 6.50 6 bids 8 hrs Buy|Remove...Figure2:Illustrationofhowthelearningagentchangesaprofilefollowingauseraction.Inthiscase,focusingonthepricefeature,theuserclicksonthesecondhit,fromwhichthelearningagentin-fersamildinterestforhigh-priceditemsandamilddisinterestforaverage-priceditems(sincethefirsthitwasskippedover).Thetemperaturesofthecor-respondingpricerangesareupdatedaccordingly.eringthemaximumamountofinformationwhilerequiringaminimumofextrafeedbackfromtheuser.Thesystemlearnstoincreasetherankingsofhitsthataresimilartothosethathaveinterestedtheuserinthepast,andreducetherankingsofthosesimilartoitemsthattheuserhasei-therignoredoractivelydisliked.TheprocessisillustratedinFigure2.

Asistypicalininductivemachinelearning,ouradaptationschemeisbasedonacollectionoffeaturesextractedfromthehits.Featuresarechosensuchthattheymightberelevanttotheuser’sevaluationoftheitem.Featurescanbeeithercontinuousordiscrete,althoughallfeaturescurrentlyusedarecontinuous.Consideringauctionsitesforexample,thefollowingfeaturesareusedinthecurrentmodel:•priceoftheitem,

•numberofbidsthathavebeenplacedontheitem,•timeremainingintheauction,and

•similarityThisiscomputedbetweenusingthequerythestandardandthecosineitemdescription.similarity:

sim(q,d)=󰀅󰀆󰀄󰀄k∈q∩dfkqfkd

k∈dfkd2󰀁󰀂󰀄k∈qfkq

2

󰀃whereqisthequery,distheitemdescription,andfki

isthefrequencyoftermkini.

Foreachfeaturex,wemaintainadistributionoftempera-turesacrosstherangeofpossiblevalues.Thetemperatureofagivenfeature/valuepairshouldcorrespondwiththeuser’sdesireforanitemwiththatcharacteristic;hightemperaturesignifiesadesirablevalue,lowtemperatureanundesirableone.Temperaturesaremaintainedforeachpossiblevalueofdiscretefeatures,e.g.,a“color”featuremighthavealowtemperatureforthevalue“pink.”Continuousvariablesarediscretized,e.g.,the“price”featurecouldhaveahightem-peratureforthevalue“low.”Cutpointsforthediscretiza-tionarebasedonthemeanµandstandarddeviationσoffeaturevaluesobservedamonghits,asfollows:

•Verylow:x<µ−2σ•Low:µ−2σ≤x<µ−σ2•Average:µ−σ2≤x<µ+

σ2•High:µ+

σ2≤x<µ+2σ

•Veryhigh:µ+2σ≤x

NotethatFigure2denotesonlythreepossiblevaluesfor

discretizedcontinuousfeatures.

Temperaturesareupdatedonanyuseraction(orinaction)relatedtoagivenhit.InFigure2,theuserclicksontheseconditem,whichishigh-priced.Thiscausesariseinthetemperatureforhighprice,i.e.,thesystemconsidersthisevidencethattheuserisinterestedinexpensivecoffee.Thetemperatureassociatedwitheachfeaturevaluefollowsasimpleupdaterule:

T(t+1)=α1T(t)+α2∆T

(1)

whereα1,α2determinehowquicklyaprofileforgetsoldpref-erencesandtracksnewones.2Therearefourpossiblereac-tionstoanygivenhit,eachwithitsowneffecton∆Tforthecorrespondingfeaturevalues:

•Buy:positiveClickingfeedback;ontheit“Buy”resultsoptioninatemperatureisconsideredincreasestrong∆T=+0.5forallthefeaturevaluesofthatitem.•Browse:tivefeedback;Clickingtheontemperaturetheitemdescriptionincreaseis∆isTweak=+0posi-.25.•Ignore:clickingIfonaoneuserfartherbypassesdownantheitem,listasofindicatedhits,thisbyisconsideredweaknegativefeedback:∆T=−0.25.TheLavazzaOroiteminFigure2isonesuchexample.•Remove:feedback:Actively∆T=−deleting0.5.anitemisstrongnegativeHitsthatappearonthelistbelowthelastonewithwhichtheuserinteracteddonotcauseanytemperatureupdates.Hitsaregivenatemperaturebasedonasimplesumofthetemperaturesforthevaluesoftheirfeatures.Thehitsarethenrankedaccordingtotheirtemperatures,fromhightolow.Userinteractionsduringaquerysessioncauseare-rankingofthehitsbasedonupdatedtemperatures.

3.2MonitorAgent

ThemonitoragentmakestheIntelliShopperautonomousinthatitproactivelyshopsonbehalfofusers(or,moreac-curately,onbehalfofpersonae).Thisagentisabackgroundprocessthatwakesupperiodicallyandqueriesthedatabasesforanyrequestsnotyetexpiredorremovedbytheusers.Theusercanspecifythedurationandfrequencyofshop-pingrequests.Foranyoutstandingrequest,theagentchecksthefrequencyatwhichtheuserhasrequestedtomonitorvendors.Ifthetimeelapsedsincethelastcheckislongerthantheonecorrespondingtothemonitoringfrequency,theagentqueriesthevendorsagainandupdatesthedatabasewiththenewhits.Newhitsmightincludepreviouslyseenitemswhosecharacteristicfeaturevalues(say,price)havechanged.Theuser(possiblynotifiedviaemail)willfindthe

2

Wesetα1=α2=1inthecurrentprototype.

newresultswaitingthenexttimeshelogsintotheIntelliSh-opper.Theresultswillberankedbasedontheprofileoftheshoppingpersonausedtomaketherequest.Astheuserlooksatthenewhits,thelearningagentcangetadditionalfeedbackandfurtheradjustthepersonaprofile.

3.3PrivacyAgent

Amultitudeofapproachesmustbetakentoimplementprivacyinoursystem.Privacycouldmeaneitherinfor-mationaboutwhoisperformingasearch,orwhatisbe-ingsearchedfor.Inordertouncoupletherequestfromtherequester,itisnecessarytohidebothhisidentityandwhereabouts.(Wedonotconsidertheissueofhidingthegeographicallocationoftheuser.)

Thewhereaboutoftheuser—mosttypicallytheIPad-dress—isbesthiddenbypassingallrequeststhroughananonymizer,whichhidestheoriginoftherequestfromtheIntelliShopperagent,andthecontentsoftherequestfromtheanonymizer’sservers.

Anonymizersaretypicallyimplementedviadistributedcontrol.Therequestmaybeamultiplyencryptedmessage.Foreachanonymizerserver,thisgetspartiallydecrypted,andpassedalongtothenextserver,accompaniedbyasetofothersuchrequests.Eachservertakesalistofinputsandpermutesandoperatesontheseusingdecryption,re-encryption,orsimilarcryptographicoperations[2,8].Afterthelastsuchserverhasoperatedonthelist,thecorrespond-ingoutputsareforwardedtotheIntelliShopperserver.Thelatterrepliesbypassingamessagebacktotheuser,employ-ingsomeuser-createdtemporaryaliastoaddressthereplyasitispassedbackthroughtheprivacyagent.

Theprivacyofanonymizersrelyonatleastoneoftheserversperformingthistaskcorrectly,andwithoutrevealingitssecretdecryptionandpermutationinformation.Infact,forthesakeofefficiency,wewilluseonlyoneanonymizingserver,aswasperformedinearlyre-mailersandinatleastonecommerciallytestedWebaccessanonymizingsystem[5].Theone-serveranonymizerisadegeneratecaseinwhichtheserveritselfistheprivacyagent.Thisservermustbetrustedbytheusers;itshouldnothaveanycommercialrelationtomerchantsandotherpartieswishingtodeterminetheidentityofshoppers.

Mostanonymizersrequireserverstohaveknowledgeofsomesecretkeyfordecryptioncorrespondingtothepub-lickeyusedtoencrypttherequest[2,19];othersrequireknowledgeofthepublickeyalone[8,16].Thismakesthelattertypeusefulforad-hocanonymizers,wherekeysarenotpre-assignedtoserversandanybodymayactasaserver.Usersmayusedifferentpseudonymsorpersonaeinordertohidetheiridentityfromtheagent(andotherparties).Here,weletapersonarefertoapseudonymthatauseremploysforaparticulartypeofactivitythatshewishestoseparate(de-correlate)fromotheractivities.However,usingthecaseofsocialsecuritynumbersassupportingevidence,itisclearthatifaparticularpseudonymorpersonaisusedforalongtime,thenthisbecomespartoftheuseridentity.Infact,thepossibilitytolinkapseudonymtotherealidentityonlyonce(withsomereasonableprobability)issufficientinorderfortheassociationtoremain.Therefore,itisim-portantforuserstomigratebetweenpseudonymsovertime,wherethemigrationfrequencydependsonthedegreeofpri-vacydesired.Note,however,thattheprecisionofthesearchdependsontheuseof(somewhatcontinuous)usernaming.

Inordertobalancetheserequirementsagainsteachother,usersmayobtaindescriptorsthatlabeltheirsearchbehav-ior,allowingthemtosubmitthesealongwithnewpersonae.Notethatthedescriptorsmustnotbedetailedenoughtoal-lowstrong“cross-pseudonym”correlations.Notealsothatsuchpseudonymupdatesshouldbeperformedinlargenum-bersatthesametime,andpreferablybyalargefractionoftheuserpopulationeachtime.Wereferto[1]foradiscus-sionofhowtoestablishandmanagepersonae.

4.INTELLISHOPPERPROTOTYPE

ApartialprototypeoftheIntelliShopperhasbeenim-plementedtotesttheideasdiscussedabove.3Thecurrentsystemresidesonasingleserveranddoesnotyetincludetheprivacyagent,whichwillbedeployedonadifferentserver.Thereforeinthecurrentprototypeeachuserhasasingleshoppingpersona.Althoughprivacyprotectionisnotcur-rentlysupportedinthecurrentprototype,wenotethatthisisbuiltaccordingtothearchitecturerequiredtolateraddtheprivacyprotectionmechanisms.Emailnotificationisalsonotyetimplementedinourprototype.

Inthedevelopmentanddeploymentoftheprototypewehaveusedfreeopensourcetoolsexclusively.TheprototypeisimplementedinPerl,usingLWPandDBImodulesforitsWebanddatabaseinterfaces,respectively.ThedatabaseisimplementedusingMySQL.TheIntelliShopperisdeployedonaDarwin-basedPowerMacwithanApacheHTTPserver.

4.1UserInterface

Figure3showssomescreenshotsoftheIntelliShopperuserinterface,illustratinghowauserinteractswiththesystem.Whenauserlogsin,IntelliShopperdisplaystheprofilein-ferredbythelearningagentbasedonthepreviousshoppingactivityofthecurrentpersona(user).Thehistoryoftheshopperisalsodisplayed,withlivelinkstooutstandingre-questsandaflagforqueriesforwhichthemonitoragenthasfoundnewhits.Theusercanclicktoexamineneworoldhits,orremoverequestshenolongerwantstomonitor.Alternatively,theusercansubmitanewshoppingrequestviathequeryinterface.Heretheusercanspecifyaquerystring(tobeforwardedtovendors)andthetypeofrequest,i.e.,whethertheuserisinterestedinshoppingatonlinestoresorauctionssites.Eachoftheseoptionscorrespondstoasetofvendormodules.Inthefutureuserswillalsobeabletoupdatetheirprofile,includingpreferencesamongvendors.Furthermore,theusercanspecifyforhowlong,andhowfrequently,themonitoragentshouldlookoutfornewavailableitemsmatchingthequery.

Oncetheresultshavebeenreceivedfromthevariousven-dors,collated,parsedandstoredinthedatabase,thelearn-ingagentpresentsthemtotheuser,rankedaccordingtothepersona(user)profile.AsFigure3demonstrates,vendorshavedifferentformatsforthedisplayedfeatures.Forexam-pleoneauctionsitesmightreporttheabsenceofbidsas“0”andanotheras“–”.Manydifferentformatsarealsousedtodisplaythetimeremaininginanauction,evenbyasinglevendor.Anauctionsitemightdisplay“at6:30PM”atonetimeand“in10minutes”atalatertime,forthesameitem.Alltheseformatsareconvertedtocommondatadomainsbeforethevalueofeachfeatureisstoredinthedatabase.3

myspiders.biz.uiowa.edu/~nvish/IntelliShopper

TheprototypecanbeaccessedontheWebat

Figure3:Top:TheinformationdisplayedbyIn-telliShopperuponlogin.Middle:Queryinterface.Bottom:Resultsofasearch.

4.2VendorModules

ThevendormodulesallowIntelliShoppertointerfacewiththevariousonlinestore/auctionsites.TherearetwoaspectstoavendorlogicfromtheIntelliShopper’sperspective:(i)submittingqueries,and(ii)parsingresults.Task(i)issim-pler;itconsistsofidentifyinganappropriateform,submis-sionprotocol,andinputsyntaxoneachvendorsite.Task(ii)ismoredifficult;itconsistsofidentifyingitemsandex-tractingfeaturevaluesforalldesiredfeatures(e.g.,productdescription,price,etc.).Whilevendorscouldreadilysim-plifythistask,saybyusingXML-basedoutput,theoppo-sitetrendseemstobetakingplace;manyvendorsarenotinterestedincompetingonpricealone,andthereforeusecomplexandchangingHTMLmarkuptomakeitdifficultforshoppingbotstoextractinformationfromtheirsites.Thereismuchactiveresearchinthedevelopmentofin-telligentwrappersthatcouldautomatetheabovetasks.Infact,thereisasortofarmsracebetweentheintelligent

name=\"eBay\"

action=\"http://search.ebay.com/search/search.dll\"method=\"GET\">

item=’

key=’’url=’’dsc=’(.*?)’price=’(.*?)’bids=’width=\"6%\">(.*?)’time=’width=\"16%\">(.*?)’/>

Figure4:Simplifiedexampleofavendormodule.Themodulehaslogictosubmitqueriestoavendorsiteandtointerprettheresults.

wrappersemployedbyshoppingbotsandthegrowingcom-plexityofHTMLinterfaces.EarlyshoppingagentssuchastheShopBot[4]demonstratedtheinterestinglearningchallengesstemmingfromthiscompetition.HowevertheIntelliShopperdescribedheredoesnotfocusonthisgoal,thereforewefollowedadifferentrouteinourimplementa-tion.Ratherthantryingtobuildautomaticwrappers,wesimplifiedthetaskofhand-codingwrappersbydesigningalanguageforthespecificationofvendor-dependentlogic.Thiswaynewvendormodulescanbewritteninminutes.AfulldescriptionofIntelliShopper’svendordescriptionlanguageisoutsidethescopeofthispaper,howeverFig-ure4illustratestheideawithanexample.ThelanguageisbasedonXMLandisinspiredbytheplug-insemployedinApple’sSherlockmeta-searchengine.Amodulecontainstwoparts:queryingandparsing.Forquerying,therearetagswithfieldsspecifyingtheURLoftheform,thesub-missionprotocol(GET/POST),andthevariousnecessaryinputparameters.Forparsing,thereisatagwithfieldsspecifyingfieldnamesandPerlregularexpressionsthatex-tractthecorrespondingfeaturevalues.Thisflexiblerepre-sentationpermitseasyupdatesforvendorsitesthatarenotparticularlyhostiletoshoppingagents.

AllthatisneededtoallowIntelliShoppertointegrateanewvendoristodropitsvendormoduleintotheappropri-atedirectory.ThecurrentprototypehasmodulesforeBay,Yahoo,andAmazonauctions.Itshouldbenotedthatwhiletheuseofregularexpressionsmakesiteasytomodifywrap-persasnecessary,italsoyieldswrappersthatarenotveryrobustinthefaceofchangingvendorsitedesign.

4.3DatabaseDesign

IntelliShoppermuststoremuchdataaboutitsshopperpersonae,theirprofiles,queries,producthits,andtheirfea-tures.Theprototypestoresallthisinformationinarela-tionaldatabase.Figure5isanentity-relationshipdiagramoutliningtheIntelliShopperdatabasedesign.

Thediagramisquiteself-explanatory.Thepreferencestablestorestheprofileofeachpersona;foreachfeature(e.g.,price)thelearningagentassignsatemperaturetoeachofthevaluerangestakenbythefeature,basedonuserfeed-back(cf.Section3.1).Foreachhitintheitemtable,the

PersonalikesVendorhassubmitssellsPreferenceQueryhitsItemhasFeatureFigure5:DatamodelofthedatabasesupportingtheIntelliShopper.Single-lineconnectionstoentitiesrepresentrelationshipsofcardinality1,andtridentconnectionsrepresentcardinalityN.

featuretablestoresthevalueofeachfeatureandthecorre-spondingrange.Thelearningagentusesthisrangetolookupthecorrespondingtemperatureinthepreferencetable,forthepersonawhosubmittedthequerythatyieldedthishit.Theresultingtemperaturesforallfeaturevaluesofanitemarethencombinedtocomputetheitemtemperatureandultimatelyrankthehits.

5.EVALUATION

EvaluationofanagentlikeIntelliShopperisdifficultbe-causemeasuresofsuccessand/orperformancearesubjec-tive.IdeallyoneshouldcompareusersatisfactionbetweenshoppersusingIntelliShopperandshoppersusingothershop-pingagents.Thisisproblematicforanumberofobviousreasons,thereforewehavefocusedontheperformanceofthelearningagent.

Thegoalisanevaluationmeasurethatisbothquanti-tativeandobjective,whilebasedondatafromrealusers.Wethusrecruited51distinctvolunteersubjectswhousedIntelliShopperduringactualshoppingsessions.Thesub-jectswereaskedtositthroughtwoormoresessionsovertheweekendof27-28October2001,shoppingforanynum-berofitemsoftheirchoice.Thesubjectssubmittedatotalof97distinctqueries(1.9queriesperuseronaverage)andsatthroughatotalof127shoppingsessions(2.5sessionsperuseronaverage).Theentireexperimentinvolvedato-talof3,425distincthits,or27hitspersessiononaverage(atmost10hitsperquerywereretrievedfromeachofthethreeauctionsites).

Duringeachshoppingsessionasubjectcouldsubmitre-quests,lookatnewhitsforpreviousrequests,andprovideindirectfeedbacktothelearningagentthroughtheIntelliSh-opperuserinterface.Alltheuserrequests,hitsandfeedbackwererecordedalongwithtworankingsofallthehitsineachsession.Thefirstrankingwastheoneusedbythesystemtodisplayhits,basedonthelearneduserprofiles.Thesecondrankingwascomputedbasedonthefeedbackinferredfromuseractionsduringeachsession.Forthehitsetcorrespond-ingtoeach(user,session,query)tuple,wemeasuredtheSpearman’srankcorrelationcoefficientbetweenthesetworankings:

ρ=1−6

󰀄n(rankIntelliShopper(i)−rankuser(i))2

i=1n(n2−1)wherenisthenumberofhitsrankedineachsession.

Theideaisthatifthelearningagentiseffective,thecor-relationbetweentherankslearnedbythesystemandtheranksinferredfromuserfeedbackshouldincreaseoverses-sions.Figure6plotsthemeanSpearman’srankcorrela-

Figure6:Spearman’scorrelationbetweenIntelliSh-opper’srankingandranksinferredfromuserfeed-back.Acorrelationcoefficientiscomputedforeveryuser/session/query,thentheseareaveragedacrossusersandqueriesineachsessionnumber.Errorbarscorrespondto±1standarderror.

tioncoefficientagainstthenumberofshoppingsessions.Af-terthefirstthreeshoppingsessionweobserveasignificantimprovementinperformance,indicatingthatthelearningagentiseffectivelypredictinguserpreferences.

6.CONCLUSION

ThispaperintroducedIntelliShopper,ashoppingassis-tantdesignedtoempowerconsumersbyadaptingtotheirpersonalpreferences,searchingproactivelyontheirbehalf,andprotectingtheirprivacy.IntelliShoppercanlearnauserprofilewithoutrequiringexplicitfeedbackfromusers,butratherobservingtheiractionsinanunobtrusivefash-ion.Thefeasibilityoftheapproachhasbeendemonstratedthroughanimplemented,publiclyavailableprototype.ThisprototypehasalsoallowedustoevaluatetheperformanceofIntelliShopper’slearningagent,showingthatthesystemcanquicklybuilduserprofilesthatcanrankitemsaccordingtouserpreferences.

Severalextensionsandimprovementsofthecurrentpro-totypeareunderway.First,wewillimplementthepri-vacyagenttodemonstratethefeasibilityoftheproposedanonymityandpseudonymityprotocolsforguaranteeingtheprivacyoftheusers.Theprivacyagentwillalsoenableamorestraightforwardimplementationofmultipleshoppingpersonaeforeachuser,allowingthelearningagenttobet-teradapttotheheterogeneousshoppingneedsofrealusers.Otherimmediateadditionstotheprototypewillincludenewvendormodulesforonlinestoresandanoptiontoallowuserstospecifypreferencesamongvendors.

FutureversionsofIntelliShopperwillincludeseveralup-datestothelearningagent,improvingthesystem’sabilitytoadapttouserpreferences.Moresimplefeatures(suchasbrandname)willbeadded,subjecttoourabilitytoconsis-tentlyextractthemfromtheitempage.Wewillalsoaddamoresophisticatedsimilaritymechanismthatcompareshitstootheritemsthathavebeenjudgedbytheuser.Thetem-peraturecombinationschemewillbemadeadaptive,sothat,

forinstance,ifaparticularuseroftenmakesdecisionsbasedonprice,thepricefeaturewillbemorehighlyweightedinrankinghits.Theα1,α2parametersinEquation1canalsobetunedadaptivelytoefficientlytrackdynamicprofiles.Wewillexploretheuseoftemperaturesettingsfromprevi-ously-learnedprofilestobootstraptheprofilesofnewper-sonae.Itisreasonabletoassumethatsomeinformationfromauser’sexistingpersonaewouldbeusefulwhenrankinghitsforanewpersona’squeries;forexample,ausermightoftenpreferlow-priceditems.However,thismightcompro-misetheidentityoftheuser.Inordertoavoidthecompletelossoflearnedprofilesduringthecreationofanewpersona,afewfeaturesoftheprofilemaybetransferredtoanewper-sonabytheuser.Thereareafewwaystoimproveprivacyatthisstage:(i)performthetasksimultaneouslywithmanyusers;(ii)staggertheintroductionofanewpersonawiththecessationofapreviousone;(iii)shedpersonaefrequently;or(iv)useveryconciseprofiletemplateswhenstartinganewpersona.Solution(i)islogisticallydifficult;allothersolu-tions,ontheotherhand,hinderefficientlearning.Thereforetheprivacyandlearningaspectsoftheshoppingagentneedtobebalancedagainsteachother.Thismaybedonebytheuser—onaperpersonabasis—byselectinganappropriatetrade-offbetweenprivacyandpersonalization.

Theuserinterfacecanbeimprovedtoallowforbetterlearningbasedonuseractionsandmoreefficientdatabasetransactions.Forexample,weplantoallowuserstochoosemultipleitemstoberemovedsimultaneouslyfromthepre-sentedlistofhits.Suchanactionwillreducethenumberofdatabasetransactionsandwillrenderfeedbacktothelearn-ingagentmoreconsistent.Furthermore,theinterfaceshouldcommunicatebetterthelearningthatistakingshapetotheuser,byemphasizingandde-emphasizingitemsbasedonthelearnedknowledge.

Adirectionforfutureresearchistostudytheopportu-nitiesforcollaborativefilteringthatstemfromcentralizedshoppingassistantssuchasIntelliShopper.Theeffectivenessofcollaborativefilteringiswellestablished.Itwouldnotbedifficult,attheusers’option,toclusterpersonaebasedontheirprofiles,andthenextendarequest’shitsetwithitemspreviouslylocatedonbehalfofotherpersonaewithsimi-larprofiles.Thiscouldbedoneirrespectiveofqueries,orsubjecttosomeminimalsimilaritybetweenqueries.

Wementionedtheneedformorerobustand/oradap-tivewrapperstointerfacewithvendorsites.Alternatively,vendorsmayfinditeconomicallyadvantageoustobecome“friendly”toshoppingagentssuchasIntelliShopper,thatputthecustomeratthecenterofthebusinessrelationship,notonlybasedonpricecompetitionbutonanumberofotherfactors.Weviewthisasabetterbusinessmodelthaneitherprice-onlybotsor,worse,comparisonshoppingagentsthatarebiasedbyhiddenfeesfromvendors.Thefirstgen-erationonuser-centeredshoppingbotsdidnotsurvivethetransitiontothecommercialrealm;botssuchasPerson-aLogic,FireflyandJangowerequicklyreplacedbythecur-rentvendor-biasedagents.Theultimatefateofthenewgenerationofshoppingassistantsproposedherewillbelike-wisedecidedbythemarketplace.

7.ACKNOWLEDGMENTS

ThankstothemembersoftheAdaptiveAgentsandDataMiningresearchgroupsatU.Iowafortheirsuggestions,andtothevolunteerswhohelpedevaluateIntelliShopper.

8.REFERENCES

[1]R.Arlein,B.Jai,M.Jakobsson,F.Monrose,and

M.Reiter.Privacy-preservingglobalcustomization.InACME-Commerce’00,2000.

[2]D.Chaum.Untraceableelectronicmail,return

addresses,anddigitalpseudonyms.Comm.oftheACM,24(2):84–88,1981.

[3]U.DooandP.Maes.Socialinformationfiltering:

Algorithmsforautomating“wordofmouth”.InProc.ACMConferenceonHumanFactorsinComputingSystems,pages210–217,1995.

[4]R.Doorenbos,O.Etzioni,andD.Weld.Ascalable

comparison-shoppingagentfortheWorld-WideWeb.InProceedingsoftheFirstInternationalConferenceonAutonomousAgents,pages39–48,1997.

[5]E.Gabber,P.Gibbons,Y.Matias,andA.Mayer.

HowtomakepersonalizedWebbrowsingsimple,secure,andanonymous.InR.Hirschfeld,editor,FinancialCryptography’97,pages17–31,1997.

[6]Y.Gertner,Y.Ishai,E.Kushilevitz,andT.Malkin.

Protectingdataprivacyinprivateinformationretrieval.InSTOC’98,1998.

[7]A.R.GreenwaldandJ.O.Kephart.Shopbotsand

pricebots.InProc.16thIntl.JointConferenceonArtificialIntelligence,pages506–511,1999.

[8]M.Jakobsson.Flashmixing.InPODC’99,pages

83–89.ACM,1999.

[9]M.JakobssonandM.Yung.Onassurancestructures

forWWWcommerce.InFinancialCryptography’98,1998.

[10]T.Joachims,D.Freitag,andT.Mitchell.

WebWatcher:Atourguidefortheworldwideweb.InProc.Intl.JointConf.onArtificialIntelligence,1997.[11]J.O.KephartandA.R.Greenwald.Shopbot

economics.AutonomousAgentsandMulti-AgentSystems.forthcoming.

[12]H.Lieberman.Autonomousinterfaceagents.InProc.

ACMConferenceonComputersandHumanInterface,Atlanta,GA,1997.

[13]L.Liu,C.Pu,,andW.Tang.WebCQ:Detectingand

deliveringinformationchangesontheWeb.InProc.Int.Conf.onInformationandKnowledgeManagement(CIKM),2000.

[14]P.Maes.Agentsthatreduceworkandinformation

overload.Comm.oftheACM,37(7):31–40,1994.[15]P.Maes,R.Guttman,andA.Moukas.Agentsthat

buyandsell.Comm.oftheACM,42(3):81–91,1999.[16]M.MitomoandK.Kurosawa.Attackforflashmix.In

T.Okamoto,editor,ASIACRYPT’00,pages192–204,2000.LNCSNo.1976.

[17]B.Nguyen,S.Abiteboul,G.Cobena,andM.Preda.

MonitoringXMLdataontheWeb.ACMSIGMODRecord,30(2):437–448,2001.

[18]M.K.ReiterandA.D.Rubin.Anonymityloves

company:AnonymousWebtransactionswithCrowds.Comm.oftheACM,42(2):32–38,1999.

[19]P.Syverson,D.Goldschlag,andM.Reed.Anonymous

connectionsandonionrouting.InProc.of18th

AnnualSymposiumonSecurityandPrivacy,pages44–54.IEEEPress,1997.

因篇幅问题不能全部显示,请点此查看更多更全内容