所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想
中考数学(动点问题)考试分析 2009 2010 2011 动点个数 两个 一个 两个 问题背景 考查难点 考 点 特殊菱形两边上移动 探究相似三角形 特殊直角梯形三边抛物线中特殊直角梯形底边上移动 上移动 探究三角形面积函探究等腰三角形 数关系式 ①求直线解析式 ②四边形面积的表示 ③动三角形面积函数④矩形性质 ①观察图形构造特征适当割补表示面积 ②动点按到拐点时间分段分类 ③画出矩形必备条件的图形探究其存在性 ①求抛物线顶点坐标 ②探究平行四边形 ③探究动三角形面积是定值 ④探究等腰三角形存在性 ①菱形性质 ②特殊角三角函数 ③求直线、抛物线解析式 ④相似三角形 ⑤不等式 ①菱形是含60°的特殊菱形; △AOB是底角为30°的等腰三角形。 ②一个动点速度是参数字母。 ③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。 ④通过相似三角形过度,转化相似比得出方程。 ⑤利用a、t范围,运用不等式求出a、t的值。 特 点 ①直角梯形是特殊的(一底角是45°) ②点动带动线动 ③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA) ④通过相似三角形过度,转化相似比得出方程。 ⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论) 共 同 点 ①特殊四边形为背景; ②点动带线动得出动三角形; ③探究动三角形问题(相似、等腰三角形、面积函数关系式); ④求直线、抛物线解析式; ⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
1
典型例题(历年真题)
一、三角形边上动点
1、如图①,在△ABC中,AB=AC,BC=acm,∠B=30°.动点P以1cm/s的速度从点B出发,沿折线B﹣A﹣C运动到点C时停止运动.设点P出发x s时,△PBC的面积为y cm2.已知y与x的函数图象如图②所示.请根据图中信息,解答下列问题:
(1)试判断△DOE的形状,并说明理由; (2)当a为何值时,△DOE与△ABC相似?
2、如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F. (1)求证:△PQE∽△PMF;
(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想; (3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.
2
3、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.
5CD(1)若BK=KC,求的值;
2AB1(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB.BC.CD三者之间有怎样
21的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变
n时,线段AB,BC,CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
二、特殊四边形边上动点
1、(2011•株洲,23,)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q. (1)求证:OP=OQ; (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
3
2、在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.
(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.
(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.
三、直线上动点 1、(2011年山东省东营市,24,12分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(-3,0),(0,1),点D是线段BC 上的动点(与端点B、C不重合),过点D作直1线yxb交折线OAB于点E. 2(1)记△ODE的面积为S,求S与b的函数关系式; 1(2)当点E在线段0A上时,且tan∠DEC=.若矩形OABC关于直线DE的对称图形为四边2形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
4
32、在平面直角坐标系XOY中,一次函数y=x+3的图象是直线l1,l1与x轴.y轴分别相
4交于A.B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P.Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.
(1)写出A点的坐标和AB的长;
(2)当点P.Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2.y轴都相切,求此时a的值.
四、抛物线上动点
1、如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0). (1)求抛物线的解析式及顶点D的坐标; (2)判断△ABC的形状,证明你的结论;
(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.
5
2、如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数). (1)求经过O、P、B三点的抛物线的解析式;
(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;
(3)当P移动到点(
)时,请你在过O、P、B三点的抛物线上至少找出两点,使每个
点都能与P、B两点构成等腰三角形,并求出这两点的坐标.
3.如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD= 90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B( -1,
2
2),D( 3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线y=ax+bx+c经过点D、M、N.
(1)求抛物线的解析式.
(2)抛物线上是否存在点P.使得PA=PC.若存在,求出点P的坐标;若不存在.请说
明理由.
(3)设抛物线与x轴的另—个交点为E.点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有QEQC最大?并求出最大值.
6
因篇幅问题不能全部显示,请点此查看更多更全内容