J.Phys.:Condens.Matter17(2005)S1259–S1268
JOURNALOFPHYSICS:CONDENSEDMATTER
doi:10.1088/0953-8984/17/14/015
Heterogeneityandfeedbackinanagent-basedmarketmodel
Fran¸coisGhoulmie1,RamaCont2andJean-PierreNadal1
LaboratoiredePhysiqueStatistique,EcoleNormale,Sup´erieure24rueLhomond,75231ParisCedex,France
2CMAP-EcolePolytechnique,F91128Palaiseau,FranceE-mail:ghoulmie@santafe.edu
1
Received3September2004,infinalform17November2004Published24March2005
Onlineatstacks.iop.org/JPhysCM/17/S1259
Abstract
Weproposeanagent-basedmodelofasingle-assetfinancialmarket,describedintermsofasmallnumberofparameters,whichgeneratespricereturnswithstatisticalpropertiessimilartothestylizedfactsobservedinfinancialtimeseries.Ouragent-basedmodelgenericallyleadstotheabsenceofautocorrelationinreturns,self-sustainingexcessvolatility,mean-revertingvolatility,volatilityclusteringandendogenousburstsofmarketactivitynon-attributabletoexternalnoise.Theparsimoniousstructureofthemodelallowstheidentificationoffeedbackandheterogeneityasthekeymechanismsleadingtotheseeffects.
(Somefiguresinthisarticleareincolouronlyintheelectronicversion)
1.Introduction
Thestudyofstatisticalpropertiesoffinancialtimeserieshasrevealedawealthofuniversalstylizedfactswhichseemtobecommontoawidevarietyofmarkets,instrumentsandperiods[6,15].Agent-basedmarketmodels,whicharebasedonastylizeddescriptionforthebehaviourofagents,attempttoexplaintheoriginsoftheobservedbehaviourofmarketpricesintermsofsimplebehaviouralrulesofmarketparticipants:inthisapproachafinancialmarketismodelledasasystemofheterogeneous,interactingagentsandseveralexamplesofsuchmodelshavebeenshowntogeneratepricebehaviourwithstatisticalpropertiessimilartothoseobservedinrealmarkets[1,4,5,13,17,19–21,18,12,26].Howevermostagent-basedmodelsareformulatedinacomplexmannerand,duetotheircomplexity,itisoftennotclearwhichaspectofthemodelisresponsibleforgeneratingthestylizedfactsandwhetheralltheingredientsofthemodelareindeedrequiredforexplainingempiricalobservations.Thiscomplexityalsodiminishestheexplanatorypowerofsuchmodels.
0953-8984/05/141259+10$30.00
©2005IOPPublishingLtd
PrintedintheUK
S1259
S1260FGhoulmieetal
Wereporthereourfindings[8]onaparsimoniouslyparameterizedagent-basedmodelofasingle-assetfinancialmarket,whichgeneratesreturnswithstatisticalpropertiessimilartothestylizedfactsobservedinfinancialtimeseries.Ouragent-basedmodelgenericallyleadstotheabsenceofautocorrelationinreturns,self-sustainingexcessvolatility,volatilityclusteringandendogenousburstsofmarketactivitynon-attributabletoexternalnoise.Theparsimoniousstructureofthemodelallowstheidentificationofheterogeneityofstrategiesandfeedbackgeneratedbythepriceimpactoforderflowasthekeymechanismsleadingtotheseeffects.Inparticular,weshowthatdirectinteractionorherdingeffectsarenotneededtogeneratestylizedfacts.Ourmodelpresentsanexamplewhereheterogeneityisendogenousandfollowsastochasticevolutionintime,leadingtoadynamicdisorderedsystemwherethedisorderdevelopswithtimeinahistorydependentmanner.2.Statisticalpropertiesofassetreturns
Timeseriesofstockreturnsexhibitinterestingstatisticalfeatureswhichseemtobecommontoawiderangeofmarketsandtime-periods[6]:
(i)Excessvolatility.By‘excessvolatility’onereferstotheobservationthatthelevelofvariabilityinmarketpricesismuchhigherthancanbeexpectedbasedonthevariabilityoffundamentaleconomicvariables[25]andtheoccurrenceoflarge(negativeorpositive)returnsisnotalwaysexplainablebythearrivalofnewinformationonthemarket[25,9].(ii)Heavytails.The(unconditional)distributionofdailyandhourlyreturnsdisplaysaheavy
tailwithpositiveexcesskurtosis.
(iii)Absenceofautocorrelationsinreturns.(Linear)autocorrelationsofassetreturnsareoften
insignificant,exceptforverysmallintradaytimescales(20min)forwhichmicrostructureeffectscomeintoplay.
(iv)Volatilityclustering.AsnotedbyMandelbrot[22],‘largechangestendtobefollowed
bylargechanges,ofeithersign,andsmallchangestendtobefollowedbysmallchanges’.Inquantitativeterms,whilereturnsthemselvesareuncorrelated,absolutereturns|rt()|displayapositive,significantandslowlydecayingautocorrelationfunction:corr(|rt|,|rt+|)>0forrangingfromafewminutestoaseveralweeks.
(v)Volume/volatilitycorrelation.Tradingvolumeispositivelycorrelatedwithmarket
volatility.Thefactthattheseempiricalpropertiesarecommontoawiderangeofmarketsandtimeperiodssuggeststhattheirorigincanberetracedtosomesimplemarketmechanisms,commontomanymarketsandthuslargelyindependentoftheir‘microstructure’[5].Thisisthebasisforthedevelopmentofagent-basedmarketmodels,whicharebasedonastylizeddescriptionforthebehaviourofagents,andattempttoexplaintheoriginsoftheobservedbehaviourofmarketpricesasemergingfromsimplebehaviouralrulesofalargenumberofheterogeneousmarketparticipants.Severalexamplesofsuchmodelshavebeenshowntogeneratepricebehaviourwithstatisticalpropertiessimilartothoseobservedinrealmarkets[1,3,4,17,19,21,18,12,26].Numericalsimulationsofmanyofthemodelsaboveleadtotimeseriesof‘returns’whichhavepropertiesconsistentwith(someof)theempiricalstylizedfactsobservedabove.However,duetothecomplexityofsuchmodelsitisoftennotclearwhichaspectofthesemodelsisresponsibleforgeneratingthestylizedfactsandwhetheralltheingredientsofthemodelareindeedrequiredforexplainingempiricalobservations.Thiscomplexityalsodiminishestheexplanatorypowerofsuchmodels.
Akeypointin[7]whichleadstoheavytailsinthedistributionoforderflowistoallowforinvestorinertia—thefactthatmostmarketparticipantstradeveryinfrequently.Apossible
Heterogeneityandfeedbackinanagent-basedmarketmodelS1261
mechanismforgeneratinginvestorinertiaisthresholdresponseinthebehaviourofmarketparticipants[14]:theriskaversionofagentswhichleadsthemtobeinactiveifuncertainabouttheiraction.Basedontheseremarks,weformulateamodelofasingle-assetmarketretainingtheingredientsabove.3.Descriptionofthemodel
Ourmodeldescribesamarketwhereasingleasset,whosepriceisdenotedbypt,istradedbyNagents.Tradingtakesplaceatdiscreteperiodst=0,1,2,....Wewillseethat,providedtheparametersofthemodelarechoseninacertainrange,wewillbeabletointerprettheseperiodsas‘tradingdays’.Ateachperiod,agentshavethepossibilityofsendinganordertothemarketforbuyingorsellingaunitofasset:denotingbyφi(t)thedemandoftheagent,wehaveφi(t)=1forabuyorderandφi(t)=−1.Weallowthevalueφi(t)tobezero;theagentistheninactiveatperiodt.TheinflowofpublicinformationismodelledbyasequenceofIIDGaussianrandomvariables(t,t=0,1,2,...)witht∼N(0,D2).trepresentsthevalueofacommonsignalreceivedbyallagentsatdatet−1.Thesignaltisaforecastofthefuturereturnrtandeachagenthastodecidewhethertheinformationconveyedbytissignificant,inwhichcaseshewillplaceabuyorsellanorderaccordingtothesignoft.
Thetradingruleofeachagenti=1,...,Nisrepresentedbya(time-varying)decisionthresholdθi(t).Thethresholdθi(t)canbeviewedastheagent’s(subjective)viewonvolatility.Thetradingrulewestudymaybeseenasastylizedexampleofthresholdbehaviour:withoutsufficientexternalstimulus(|t|θi(t)),anagentremainsinactiveφi(t)=0andiftheexternalsignalisaboveacertainthreshold,theagentwillact:ift>θi(t),φi(t)=1,ift<−θi(t),φi(t)=−1.Thecorrespondingdemandgeneratedbytheagentisthereforegivenby:
φi(t)=1t>θi(t)−1t<−θi(t).
TheexcessdemandisthengivenbyZt=changeinthepricegivenby
ptZt
=grt=ln
pt−1N
N
i=1
(1)
φi(t).Anon-zerovalueofZproducesa
(2)
wherethepriceimpactfunctiong:R→Risanincreasingfunctionwithg(0)=0.We
definethe(normalized)marketdepthλby:g(0)=1/λ.Whilemostoftheanalysisbelowholdsforageneralpriceimpactfunctiong,insomecasesitwillbeusefultoconsideralinearpriceimpact:g(z)=z/λ.
Initially,westartfromapopulationdistributionF0ofthresholds:θi(0),i=1...NarepositiveIIDvariablesdrawnfromF0.Updatingofstrategiesisasynchronous:ateachtimestep,anyagentihasaprobability0s1ofupdatingherthresholdθi(t).Thus,inalargepopulation,srepresentsthefractionofagentsupdatingtheirviewsatanyperiod;1/srepresentsthetypicaltimeperiodduringwhichanagentwillholdagivenviewθi(t).Ifperiodsaretobeinterpretedasdays,sistypicallyasmallnumbers10−1–10−3.Whenanagentupdatesherthreshold,shesetsittobeequaltotherecentlyobservedabsolutereturn,whichisanindicator
t
|.IntroducingIIDrandomvariablesui(t),i=1...N,t0ofrecentvolatility|rt|=|lnppt−1
uniformlydistributedon[0,1],whichindicatewhetheragentiupdatesherthresholdornot:
θi(t)=1ui(t)(3)
Thiswayofupdatingcanbeseenasastylizedversionofvariousestimatorsofvolatilitybasedonmovingaveragesofabsoluteorsquaredreturns.Itisalsocorroboratedbyarecentempirical
S1262FGhoulmieetal
studybyZovkoandFarmer[27],whoshowthattradersuserecentvolatilityasasignalwhenplacingorders.
Theasynchronousupdatingschemeproposedhereavoidsintroducinganartificialorderingofagentsasinsequentialchoicemodels.Therandomnatureofupdatingisalsoaparsimoniouswaytointroduceheterogeneityintimescales,afeaturebelievedtobeimportant[19],withoutintroducingextraparameters.Giventhisrandomupdatingscheme,evenifwestartfromaninitiallyhomogeneouspopulationθi(0)=θ0,heterogeneitycreepsintothepopulationthroughtheupdatingprocessandevolvesinarandommanner,leadingtoahistory-dependentdisorderedsystem.
Letusrecallthemainingredientsofthemodel.Ateachtimeperiod:(i)Agentsreceiveacommonsignal(t)∼N(0,D2).(ii)Eachagenticomparesthesignaltoherthresholdθi(t).
(iii)If|(t)|>θi(t)theagentconsidersthesignalassignificantandgeneratesanorderφi(t)
accordingto(1).
(iv)Themarketpriceisimpactedbytheexcessdemandandmovesaccordingto(2).(v)Eachagentupdates,withprobabilitys,herthresholdaccordingto(3).
Comparedtomostagent-basedmodelsconsideredintheliterature,thereisnoexogenous‘fundamentalprice’processandwedonotdistinguishbetween‘fundamentalist’and‘chartist’traders.Also,thesameinformationisavailabletoallagentsbuttheydifferinthewaytheyprocesstheinformation.Wedonotintroduceany‘socialinteraction’amongagents:nonotionoflocality,latticeorgraphstructureisintroduced.Themodelhasveryfewparameters:sdescribestheaverageupdatingfrequency,Dthestandarddeviationofthenoiserepresentingthenewsarrivalprocess,themarketdepthλandthenumberofagentsNwhichistypicallylarge.Wewillobserveneverthelessthatthissimplemodelgeneratestimeseriesofreturnswithinterestingpropertiessimilartoempiricallyobservedpropertiesofassetreturns.4.Simulationresults
Inorderforadirectcomparisonwithempiricalstylizedfactstobemeaningful,wehavetoconsiderthatinthecaseofempiricaldataonlyasinglesamplepathofthepriceisavailableand(unconditional)momentsarecomputedbyaveragingoverthe(single)samplepath.Wethereforeadoptasimilarapproachhere:aftersimulatingasamplepathofthepriceptforT=104periods,wecomputethetimeseriesofreturnsrt=ln(pt/pt−1),t=1...T,theirhistogram,amovingaverageestimatorofthestandarddeviationofreturns(‘volatility’),thesampleautocorrelationfunctionofreturnsandthesampleautocorrelationfunctionofabsolutereturns.Inordertodecreasethesensitivityofresultstoinitialconditions,weallowforatransitoryregimeanddiscardthefirst103periodsbeforeaveraging.
Inordertointerpretthetradingperiodsas‘days’andcomparetheresultswithpropertiesofdailyreturns,wenotethatwhengislinear|rt|1/λandchoose5λ20whichallowsa(maximal)rangeofdailyreturnsbetween5%and20%.Also,theamplitudeDoftheinputnoisecanbechosensuchastoreproducearealisticrangeofvaluesforthe(annualized)volatility:thisleadstochoosingDintherange10−3–10−2.Letusemphasizethatwearediscussingthecalibrationoftheorderofmagnitudeofparameters,notfine-tuningthemtoasetofcriticalvalues.Theresultsdiscussedinthesequelaregenericwithinthisrangeofparameters.Figures1and2illustratetypicalsamplepathsobtainedwithdifferentparametervalues:theyallgenerateseriesofreturnswithrealisticrangesandrealisticvaluesofannualizedvolatility.Foreachseries,werepresentthehistogramofreturnsbothinlinearandlogarithmic
Heterogeneityandfeedbackinanagent-basedmarketmodelS1263
(a)120
11010090memory8070605040302020
30
40
50
60
70
80
90
100
updating period 1/s
(b)110
10510095πi(t)90858075700
10002000300040005000600070008000900010000
t
Figure1.Numericalsimulationofthemodelwithupdatingfrequencys=0.01(averageupdatingperiod:100‘days’)N=1000agents,D=0.001andλ=10.
scales,theACFofreturnsCr,theACFofabsolutereturnsC|r|.Thereturnseriesobtainedpossessregularitieswhichmatchthepropertiesoutlinedinsection2:
(i)Excessvolatility.Thesamplestandarddeviationofreturnscanbemuchlargerthanthestandarddeviationoftheinputnoiserepresentingnewsarrivalsσˆ(t)D.
(ii)Mean-revertingvolatility.Themarketpricefluctuatesendlesslyandthevolatility,as
measuredbythemovingaverageestimatorσˆ(t),goesneithertozeronortoinfinityanddisplaysamean-revertingbehaviour.
(iii)Thesimulatedprocessgeneratesaleptokurticdistributionofreturnswith(semi-)heavy
tails,withanexcesskurtosisaroundκ7.Asshowninthelogarithmichistogramplotsinfigures1,2,thetailsexhibitanapproximatelyexponentialdecay,asobservedinvariousstudiesofdailyreturns[10].
(iv)Thereturnsareuncorrelated.Thesampleautocorrelationfunctionofthereturnsexhibits
aninsignificantvalue(verysimilartothatofassetreturns)atalllags,indicateabsenceoflinearserialdependenceinthereturns.
S1264
Market Activity
1500100050000.10.050–0.05–0.15001500100050001500100010
2FGhoulmieetal
Trading volume
43210500010000Distribution of returns
010
4Price
05000Log returns
100000500010000Distribution of returns
00500010000–0.100.1Annualized Moving average volatilityAuto– correlation of returns0.30.210–0.100.1Auto– correlation of absolute returns0.60.40.2000.250.10– 0.10.20500010000– 0.20200400600– 0.202040Figure2.Numericalsimulationofthemodelwithupdatingfrequencys=0.1(averageupdating
period:10‘days’)N=1500agents,D=0.001andλ=10.
(v)Volatilityclustering.Theautocorrelationfunctionofabsolutereturnsremainssignificantly
positiveovermanytimelags,correspondingtopersistenceoftheamplitudeofreturnsatimescale1/s.5.Somelimitingcases
(i)Feedbackwithoutheterogeneity.Inthecasewheres=1,allagentssynchronouslyupdatetheirthresholdateachperiod.Consequently,theagentshavethesamethresholds,givenbythelastperiodsabsolutereturn:θi(t)=|rt−1|andwillthereforegeneratethesameorder:Zt=Nφ1(t)∈{0,N,−N}.So,thereturnrtdependsonthepastonlythroughtheabsolutereturn|rt−1|:
rt=f(|rt−1,t|)=g(N)1t>|rt−1|+g(−N)1t<−|rt−1|,
adependencestructuretypicalofARCHmodels[11],leadingtouncorrelatedreturnsandvolatilityclustering.Inthiscase,thedistributionofrtconditionalon|rt−1|isactuallyatrinomialdistribution:rt∈{0,g(N),g(−N)},whichisnotrealistic.Simulationstudiesshowthatasimilarbehaviourpersistsfor1−s1,leadingtotri-modaldistributions.Thisconfirmsourintuitionthattheupdatingprobabilitysshouldbechosensmall.
(ii)Heterogeneitywithoutfeedback.Inthecasewheres=0,noupdatingtakesplaces:the
tradingstrategies,givenbythethresholdsθi,areunaffectedbythepricebehaviourand
Heterogeneityandfeedbackinanagent-basedmarketmodelS1265
thefeedbackeffectisnolongerpresent.Heterogeneityisstillpresent:thedistributionofthethresholdsremainsidenticaltowhatitwasatt=0.Thereturnrtdependsonlyont:
1N
rt=g1>θ−1t<−θi=F(t).
Ni=1tiWeconcludethereforethatthereturnsareIIDrandomvariables,obtainedbytransformingtheGaussianIIDsequence(t)bythenonlinearfunctionFgivenin(ii),whosepropertiesdependonthe(initial)distributionofthresholds(θi,i=1...N).Thelog-pricethenfollowsa(non-Gaussian)randomwalkandthemodeldoesnotexhibitvolatilityclustering.6.Behaviourofpricesandvolatility
Thetwolimitingcasesaboveshowthat,inordertoobtaintheinterestingstatisticalpropertiesobservedinthesimulatedexamplesshownabove,itisnecessarytohave0•Markoviandynamics.Thethresholds[θi(t),i=1...N]followaMarkovchainin{g(k),k=0...N}.Wehaveθi(t+1)=θi(t)withprobability1−sand
N1withprobabilitys.[1>θ−1t<−θi]θi(t+1)=|rt|=gNi=1tiInfactgiventhatagentsareindistinguishableandonlytheempiricaldistributionof
thresholdvaluesaffectsthereturns,definingNk(t)=iN=11[0,ak[(θi(t))then(Nk(t),k=0...N−1)t=0,1,...evolvesasaMarkovchainin{0,...,N}N.N(t)=(Nk(t),k=0...N−1)isnoneotherthanthe(cumulative)populationdistributionofthethresholds.ThefactthatN(t)itselffollowsaMarkovchainmeansthatthepopulationdistributionofthresholdsisarandommeasureon{0,...,N},whichischaracteristicofdisorderedsystems[23],evenifwestartfromadeterministicsetofvaluesfortheinitialthresholds(evenidenticalones).Herethedisorderisendogenousandisgeneratedbytherandomupdatingmechanism.
•Excessvolatility.Inthismodel,thevolatilityofthenewsarrivalprocessisquantifiedbyDwhichisthestandarddeviationoftheexternalnoiset,whereasthevolatilityofthereturnscanbemeasuredaposterioriasthe(conditionalorunconditional)standarddeviationofrt.Asseenfromthenonlinearrelationbetweentandrt,
N
1−1t<−θi(t)i=1t>θi(t)
rt=g
λNevenafterconditioningonthecurrentstatesofagentsθi(t),i=1...N,equation(6)yieldsanonlinearrelationbetweentheinputnoisetandthereturnswhichcanhavetheeffectofamplifyingthenoisebyanorderofmagnitudeormore.Inthesimulationexampleshowninfigure1,D=10−3whichcorrespondstoanannualizedvolatilityof1.6%,whiletheannualizedvolatilityofreturnsisintherangeof20%,anorderofmagnitudelarger;theorderofmagnitudeofthevolatilityofreturnsmaybequitedifferentfromthatoftheinputnoise.
•Absenceofautocorrelation.Fromthedynamicequationsofthemodel
NN11Zt=φi(t)=[1>θ−1t<−θi]
Ni=1Ni=1ti
(4)
S1266
Market Activity
60040020000.0540030020010005000Log returns
1000000500010000Distribution of returnsTrading volume
21.510.50101010
3FGhoulmieetalPrice
0500010000Distribution of returns
400300202001100 –0.0500500010000 –0.100.1Annualized Moving average volatilityAuto–correlation of returns 0.40.20.150.30.20.10.10.05005000100000
200
400
600
10
–0.100.1Auto–correlation of absolute returns0.30.20.10 –0.102004006000Figure3.Left:correlationtimescaleτcofabsolutereturns,asafunctionoftheupdatingperiod1/s.Right:evolutionoftheportfolioofatypicalagent,withlongperiodsofinactivitypunctuatedbyburstsofactivity.
N
1
rt=g(Zt)=g[1>θ−1t<−θi]
Ni=1ti
(5)
onecandeducethat,ifgisanoddfunction(inparticularifgislinear),thenassetreturns(rt)t0areuncorrelated;cov(rt,rt+1)=0.Thisisduetothefactthatthetrading/nontradingdecisionisbasedonlyontheamplitudeofthesignal,notitssign.Thesignofthereturnisdeterminedbythesignofthecommonsignal,whichisindependentacrossperiods.
•Investorinertia.Exceptintimesofcrisisormarketcrash,atagivenpointintimeonlyasmallproportionofstockholdersareactuallytradinginthemarket.Asaresult,the(daily)orderflowforatypicalstockcanbemuchsmallerthanthemarketcapitalization.Thisphenomenon,sometimesreferredtoasinvestorinertia,isagenericoutcomeinourmodelduetothresholdbehaviourofagents.Startingfromtaninitialholdingofπi(0),thequantityofassetheldbyagentiisgivenbyπi(t)=τ=0φi(τ).Figure3displaystheevolutionoftheportfolioπi(t)ofatypicalagent;shortperiodsofactivity(trading)areseparatedbylongperiodsofinertia,wheretheportfolioremainsconstant.This‘inertia’increasesinperiodsofhighvolatility,aneffectsimilartothebehaviourofrisk-averseagent.
•Clusteringandmean-reversioninvolatility.Manymarketmicrostructuremodels—especiallythosewithlearningorevolution—convergeoverlargetimeintervalstoan
Heterogeneityandfeedbackinanagent-basedmarketmodelS1267
equilibriumwherepricesandotheraggregatequantitiesceasetofluctuaterandomly.Bycontrast,inthepresentmodel,pricesfluctuateendlesslyandthevolatilityexhibitsmean-revertingbehaviour.Supposeweareinaperiodof‘lowvolatility’;theamplitude|rt|ofreturnsissmall.Agentswhoupdatetheirthresholdswillthereforeupdatethemtosmallvalues,becomemoresensitivetonewsarrivals,thusgeneratinghigherexcessdemandandthusincreasingtheamplitudeofreturns.Conversely,inaperiodofhighvolatility,agentswillupdatetheirthresholdvaluestohighvaluesandbecomelessreactivetotheincomingsignal:thisincreaseininvestorinertiawillthusdecreasetheamplitudeofreturns.Themeanreversiontimeinthevolatilityisthereforethetimeittakesforagentstoadjusttheirthresholdstocurrentmarketconditions,whichisoftheorderofτc=1/s.
Whentheamplitudeofthenoiseissmallitcanbeshown[8]thatvolatilitydecaysexponentiallyintimeandincreasesthroughupward‘jumps’.ThisbehaviourisactuallysimilartothatofaclassofstochasticvolatilitymodelsintroducedbyBarndorff-NielsenandShephard[2]andsuccessfullyusedtodescribevariouseconometricpropertiesofreturns.7.Conclusion
Wehavepresentedaparsimoniousagent-basedmodelcapableofreproducingthemainempiricalstylizedfactsdescribedinsection2,basedonthreemainingredients:
(i)Thresholdbehaviourofagents.
(ii)Heterogeneityofagentstrategies,generatedendogenouslythroughrandomasynchronous
updatingofthresholds.
(iii)Feedbackofrecentpricebehaviouronagentsbehaviour.
Numericalsimulationsofthemodelgenericallyproducetimeseriesthatcapturethestylizedfactsobservedinassetreturns.Duetothesimplestructureofthemodel,thesesimulationresultscanbeexplainedbyatheoreticalanalysisofthepriceprocessinthemodel.Theseobservationsillustratethatthesethreeingredientssufficeforreproducingseveralempiricalstylizedfactssuchasheavytails,absenceofautocorrelationinreturnsandvolatilityclustering,withrealisticvaluesinthetimescalesinvolvedandwithoutanyexogenous‘fundamental’price,directinteractionbetweenagentsordistinctionbetween‘chartist’or‘fundamentalist’traders.Theseresultsquestionsomepreviousconclusionsregardingtheoriginsofstylizedpropertiesofassetreturnspreviouslydrawnfromsimulationofagent-basedmodelsandcallforacloser,criticallookatthisissuethroughthestudyofawidervarietyofagent-basedmarketdesigns.Thesepointsarefurtherdevelopedin[8].References
[1]ArthurW,HollandJ,LeBaronB,PalmerJandTaylerP1997Assetpricingunderendogeneousexpectationsin
anartificialstockmarketTheEconomyasanEvolvingComplexSystemvol2,edWArthur,SDurlaufandDLane(Reading,MA:PerseusBooks)pp15–44
[2]Barndorff-NielsenOEandShephardN2001Non-GaussianOrnstein–Uhlenbeckbasedmodelsandsomeof
theirusesinfinancialeconometricsJ.R.Stat.Soc.B63167–241
[3]BrockWandHommesC1998HeterogeneousbeliefsandroutetochaosinasimpleassetpricingmodelJ.Econ.
Dyn.Control22468–85
[4]ChalletD,ChessaA,MarsiliMandZhangY2001FromminoritygamestorealmarketsQuant.Finance1
168–76
[5]ContR1998Modelingeconomicrandomness:statisticalmechanicsofmarketphenomenaStatisticalPhysics
inthe21stCentury:TheJamesBMcGuireFestschriftedMBatchelorandLWille(Singapore:WorldScientific)
S1268FGhoulmieetal
[6]ContR2001Empiricalpropertiesofassetreturns:stylizedfactsandstatisticalissuesQuant.Finance11–14[7]ContRandBouchaudJ-P2000HerdbehaviourandaggregatefluctuationsinfinancialmarketsMacroecon.
Dyn.4170–95
[8]ContR,Ghoulmi´eFandNadalJ-P2004Thresholdbehaviourandvolatilityclusteringinfinancialmarkets
WorkingPaper
[9]CutlerD,PoterbaJandSummersL1989Whatmovesstockprices?J.PortfolioManage.4–12
[10]DingZ,GrangerCandEngleR1983AlongmemorypropertyofstockmarketreturnsandanewmodelJ.
EmpiricalFinance183–106
[11]EngleR1995ARCHModels(Oxford:OxfordUniversityPress)
[12]FarmerJDandJoshiS2002ThepricedynamicsofcommontradingstrategiesJ.Econ.Behav.Organ.49
149–71
[13]GiardinaIandBouchaudJ-P2003Bubbles,crashesandintermittencyinagentbasedmarketmodelsEur.Phys.
J.B31421–37
[14]GranovetterM1978ThresholdmodelsofcollectivebehaviourAm.J.Sociol.831420–43[15]GuillaumeD,DacorognaM,Dav´eR,M¨ullerU,OlsenRandPictetO1997Fromthebirdseyeviewtothe
microscope:asurveyofnewstylizedfactsoftheintradayforeignexchangemarketsFinanceandStochastics195–131
[16]HommesCH,GaunersdorferAandWagenerFO2003Bifurcationroutestovolatilityclusteringunder
evolutionarylearningTechnicalReport,CenDEF
[17]IoriG2002Amicrosimulationoftradersactivityinthestockmarket:theroleofheterogeneity,agentsinteractions
andtradefrictionsJ.Econ.Behav.Organ.49269–85
[18]KirmanAandTeyssiereG2002Microeconomicmodelsforlong-memoryinthevolatilityoffinancialtime
seriesStud.NonlinearDyn.Econometrics5281–302
[19]LeBaronB2001Evolutionandtimehorizonsinanagent-basedstockmarketMacroecon.Dyn.5225–54
[20]LiCalziMandPellizzariP2003Fundamentalistsclashingoverthebook:astudyoforder-drivenstockmarkets
Quant.Finance3470–80
[21]LuxTandMarchesiM2000VolatilityclusteringinfinancialmarketsInt.J.Theor.Appl.Finance3675–702[22]MandelbrotBB1963ThevariationofcertainspeculativepricesJ.Business36392–417[23]M´ezardM,ParisiGandVirasoroM1989SpinGlassesandBeyond(Singapore:WorldScientific)
[24]OrleanA1995BayesianinteractionsandcollectivedynamicsofopinionsJ.Econ.Behav.Organ.28257–74[25]ShillerR2000IrrationalExuberance(Princeton,NJ:PrincetonUniversityPress)
[26]StaufferD2001PercolationmodelsoffinancialmarketdynamicsAdv.ComplexSyst.419–27
[27]ZovkoIandFarmerJD2002Thepowerofpatience:abehaviouralregularityinlimitorderplacementQuant.
Finance2387–92
因篇幅问题不能全部显示,请点此查看更多更全内容