www.elsevier.com/locate/microrel
Introductoryinvitedpaper
DrainbreakdowninsubmicronMOSFETs:areview
HeiWong
DepartmentofElectronicEngineering,CityUniversity,TatCheeAvenue,Kowloon,HongKong
Received6July1999
Abstract
Thispaperreviewsthephysicsandmodelsofdrainbreakdowninshort-channelMOSFET.Fourmechanisms,namely,(1)avalanchebreakdown(MImode),(2)®nitemultiplicationwithpositivefeedbackofthesubstratecurrent,and(3)parasitictransistorinducedbreakdownand(4)punchthrough,arediscussed.Sincethebreakdownmechanismshavedierentdependenciesonitsdeviceparametersoperationconditions,thedeviceparametersshouldbeoptimizedtohavebetterreliabilitymarginsinthedown-scaledstructures.#2000ElsevierScienceLtd.Allrightsreserved.
1.Introduction
TheadvancesinVLSItechnologyhaveresultedinseveralhundredmillionsofdeepsubmicrontransistorsbeingintegratedinasinglesiliconchip.Thelatest0.17mmCMOStechnologyfor1GbitDRAMgenerationwillsoonbescaleddowntoabout0.07mmforthe64GbitDRAMlevelinyear2010[1±3].Itisnodoubtthatthereliabilityproblemshavebecomeextremelystringentinthesedevices[3±7].Recently,asurveywasconductedbytheQualityCouncil,ReliabilityTechnologyAdvisoryBoardtoprojectthereliabilityrelatedtechnologyconstraintsformicroelectronicsindustryintheyear2000[7].Accordingtothissurvey,thetop®veconcernsfromthemanufacturersaregatedielectricreliability,electromigration,electrostaticdis-charge(ESD),multilevel/dielectricintegrity,andhotcarriers.Amongstthese®veissues,fourofthemareactuallyrelatedtothehighelectric®eldreliabilityofmaterialsanddevices.Althoughtremendouseortshavedevotedtotheinvestigationofgatedielectricre-liability[8±12],ESD[13±16]andhot-electroneects
E-mailaddress:eehwong@cityu.edu.hk(H.Wong).
[17±29].DuringtheMOStechnologyevolutioninrecentfewdecades,thesupplyvoltagewassometimesnotscalingaccordinglyforeverytechnologygenerationbecauseofspeedrequirementsandstandardization[1].Wehaveexperiencedasmallerdownscalefactorinsupplyvoltagethanthegateoxidethicknesswhenmi-gratingfromthe1Mbittothe64MbitDRAMgener-ation.Meanwhile,thesimpleconstant-®eldrule[30,31]maynotbevalidfordeepsubmicronstructures.Asthe®elddependenciesofdeviceparametersmaybenolongerthesameasthoseofthecurrentstructuredevice.Hence,thehigh-®eldreliabilityenduranceoftheshort-channelMOSdeviceswillbestillacriticalconstrainevenaconstant-®eldscalingruleisadopted.Nevertheless,atentativescenarioforscalingofthesupplyvoltageandchannellength(seeFig.1)hasbeenproposedandmostlikelywillbeadoptedinthenext-generationintegratedcircuits[1].
Thebasicideaofthescalingrulesistoensurethebasicdevicephysicsofsmall-sizedtransistorsdoesnotchangesigni®cantly.Themostoftenandwidelyacceptedruleistheconstantelectric®eldscalingrule[30,31].Thisgoalcanbeachievedbyreducingitsgeo-metrybythesamefactorsasthesupplyvoltages.Althoughthescalingrulehasforeseenmanyproblems
0026-2714/00/$-seefrontmatter#2000ElsevierScienceLtd.Allrightsreserved.PII:S0026-2714(99)00086-4
4H.Wong/MicroelectronicsReliability40(2000)3±15
Fig.1.Proposeddrain±voltagescalingscenarioforthegiga-scaleMOStechnology[1].
inthedeviceminimization,someproblemscannotbepredictedwiththescalingruleasthedeviceshavebeenshrunktoveryclosetheirphysicalconstraints.Particularly,thereliabilitymarginsofintegratedcir-cuitshavebeencutdownsigni®cantly[1].Althoughtremendouseortshavebeendevotedintoinvesti-gatingthescalingeects,itisstillnotenough.Especiallyfordrainbreakdown,itisoftenmistakenthatthebreakdownvoltagewillbescalingwiththesamefactorasconstant®eldscalingruleisadopted.Recentstudiesrevealthatthedrainbreakdownvoltageisnotalinearlyscalableparameterandneedtobeoptimizedduringthedevicedesign[32,33].Table1showstwoschemesofscalingwithparametersrelatedtodrainbreakdown.Themajordierencesbetweenthetwoschemesaretheelectric®eldandvoltagescal-ingfactors.Intheconstant-®eldscheme[30],theelec-tric®eldisconstantwhichrequiresthesupplyvoltagetobecutdownto1alandthedopantconcentration
Table1
ListofscalingrulesforparametersgoverningthedrainbreakdownQuantity
Symbol
increasesbyltimesifthetransistorfeaturesizeisscaledto1alXBothrequirementsproducedicultiesinrealization.Fornoisemarginsandstandardizationrequirements,thesupplyvoltagemaynotbeabletoscalebytherequiredfactor.Whiletheincreaseofchanneldopantconcentrationbeyond1016cmÀ3willresultinsigni®cantmobilitydegradation.Tomeetthestandardizationconstraint,Baccaranietal.[34]pro-posedanon-constant®eldscalingscheme(seeTable1).Thisscheme,havingscaledtheelectric®eldupbylak(>1),willmakethedevicereliabilityevenworstandrequiresevenhigherconcentrationchanneldoping.Thispaperreviewsthephysicsandmodelsofdrainbreakdownandtheimpactofdevicescalingonthesemechanisms.Thephysicsunderlyingofthedrain-to-sourcebreakdownorsimplythedrainbreakdownofMOSFET'sisnowquiteclearafteralotofeortshav-ingputinduringthelastdecade[32,33,35±45].Thedrainbreakdowncanresultfromimpactionization[32,35±40],aparasiticbipolartransistor[33,41,42],orthepunchthrougheect[43±45].Abriefreviewontherecentachievementsonmodelingoftheimpactioniz-ationinMOSdeviceswillbegiveninSection2.Fundamentalphysicscanbefoundinthereviewpre-sentedbyMaesetal.[35].InSection3,characteristicsandtheoriesfordrainavalanchebreakdownwillbediscussed.TheactionsofparasitictransistorandpunchthroughindrainbreakdownwillbediscussedinSections4and5,respectively.
2.Impactionization
AsthefeaturesizeofintegratedMOSdevicesdecreasesfurther,thehighelectric®eldnearthedrainregionbecomesmorecrucialandhasposedalimitonthedeviceoperations,notablybyalargegatecurrent,substratecurrentandsubstantialthresholdvoltageshift.Hotelectrongenerationanddrainbreakdowncausedbytheimpactionizationinthehigh®eldregionnearthedrainandthekeyparametersfordescribing
ScalingfactorNon-constant®eld
Constant®eld1al1al1l1al
LineardimensionPotentialElectric®eld
ImpurityconcentrationCurrentL,W,toxVG,VD,fE
Na,Nd,NBIDS1al1aklakl2aklak2
H.Wong/MicroelectronicsReliability40(2000)3±155
thesethelengthmechanismsofvelocityaresaturationtheimpactregion.ionizationrateand2.1.Impactionizationrate
dicult.Exactcalculationoftheionizationrateis®eldhighapproximationThesolutionisgenerallyobtainedbyextremelythelocallowerelectric®eldsin(Wol'stwoseparatemodelcases,[46])oneforvery[47]).valuesoftheelectric®eld(Shockley'sandonemodelforregionHowever,validateinMOSthetransistorchanneliselectric®eldnearthedrainShockley'sWol'smodelnorlowneitherenoughhightoenoughvalidatetoposedelectricamodel,model.whichOkutoisaccurateandCrowell[48]thenpro-ation®eldregions.Unfortunately,inbothsincehightheandevalu-lowdownofionizationgenerallysubstrateinvolvescurrentorthedrainintegrationavalanchebreak-51],proximationthemathematicalrateoverthevelocitysaturationregionof[49±thelytical[48]istooformcomplicatedofOkutotoandbeCrowellap-widelycalculation.HencetheShockley'smodelusedinisana-stillandimpactusedionizationinmodelinginMOSFET'sthehotelectronsogenerationizationAccordingeventstricpercoecient,toShockley'sunitlength,a,whichmodel[47],thefar.
impaction-isdeterminedisthenumberbyofionizationThe®eld,E,withthecharacteristics®eldthestrength,localelec-[47]
impactionizationratecanbeapproximatedbyB.aAexpÀBaE
1
whereof(1)inverseAisadistance.proportionalityAsmentionedconstantbefore,withadimensiondoesisanapproximationforthelowelectricexpressioncase,itcarriers.notBHence,consideritrequirestheenergythedistribution®ttingfunctionofbiasingtobemodi®edfordierentprocessesparameteranddierentAandandcm,respectivelyBareconditions.equal[52].toFor2.45electronsÂ105cmonÀ1andsilicon1.92surface,Â106V/A2.2.Impactionizationlength
(VSR)Ontheotherhand,thevelocity-saturation-regionwhereportantimpactlengthionizationorthewidthoccurs,ofistheonehigh-®eldofthemostregionim-Itparametersinshort-channelMOStransistors.strategovernsthesecurrentthedrainandhot-electronbreakdownvoltagegeneration.[32,33,53],sub-high-®eldphenomena,availableregionisprecisemodelingoftheTowidthstudyofbasedwereoneon[49,53].someAsindispensable.thosemodelsSeveralweremodelsdevelopedaredimensionalcrudeassumptionsapproximation,andtheirallofvalidity
themFig.ionization2.Power-lawmultiplicationapproximationfactor.
ofbias-dependentimpactfadesEmpiricaloutforMOSresultsthehaverecentdown-scaledMOSstructure.gateandoxidetransistorthickness,isgovernedshownthattheVSRlengthinbiasandbythechanneljunctiondepthandbasedSharma[53]developedanempiricallength.relationshipAroranotametersmodeledontheMINIMOSwell,[36]simulationresults,itwasciesintroducedhowever.toaccountSomeforofthemodelpar-izationAvarythebiasdependen-morefromdevicetodevice.
region,accuratelmodelforthewidthofimpaction-d,wasdevelopedrecently[51]whichis
pldIld0ln
au
u22au1a12
whereasaturationlld0peSitoxxjaeox
,uVDÀVDsatald0Esandd0aLÀsourcevelocity;2ld0XESistheminimumelectric®eldforMOSFET,voltageVDSandVDsatarethedrain-to-oxide;respectively.andthedraintsaturationvoltageoftheoxchannelxisthethicknessofgatejoflength;isthedrainejunctiondepth;Listheeectiveoxthatgatetionofloxideandsilicon,andeSirespectively.arethedielectricEq.(2)constantsindicatesdincreaseschannellength.
withthedrainvoltageandisafunc-asFig.[31]a2showsthewidthofimpactionizationregion®gure,isfunctionalsoofchannellengthandbias.Ko'smodelmationlshownforcomparison.Asshowninthedcalculatednelthelength(Ko'sandapproximation)usingtheoftenover-estimatesisconventionalindependentthelofapproxi-chan-dvalues.FornelmodellengthgivenanditinagreesEq.(2),veryldincreaseswellwithwiththenumerical
thechan-6H.Wong/MicroelectronicsReliability40(2000)3±15
Fig.saturation3.Apreciseregion.
modelforbias-dependentlengthofvelocity
resultsVforobservedthechannelrangelengthof1todownto0.5mmandVDÀDsatinVindevicewithL03X5V.mmAatlargersmallvalueerrorofisinsigni®cantDÀVDsatXAlthoughthedeviationmaybelarge,itationcarriersasatlowincalculatingdrainvoltagetheonlysubstratesmallcurrentgener-isonlylyticalbeareusedgenerated.forcomputerHowever,simulationexpressionamountofhotonly.(2)canbiasReaderdependentcalculation,modelsshouldareapproximations.bearslitistoocomplicatedtoconsiderForana-thed.Weinhavemindtothattreatmostldofastheaconstant.available2.3.Multiplicationfactor
latedTheas
avalanchemultiplicationfactorcanbecalcu-23À1M1À
ld
0
ady
3
Furtherassumingthechannelelectric®eldisEyEScoshyald
4
andusingEqs.(1)and(2),wehave[49,50]
1
M1ÀABVDSÀVDsatexpÀldBVDSÀVDsat
5
NotethatEq.(5)isvalidforVDSÀVDsataldbESXingTothemakebreakdownthemathematicalvoltage,westepsapproximatetractableinEq.estimat-(5)as
Fig.down4.inSchematicMOSFET.
diagramshowingthedrainavalanchebreak-follow[32],
1VDS
M1Àa0ÀVDsatr
ldE0
6
whereE0isabout4Â105V/cmanda0isgivenby
a0ABBldE0expÀE07
AsshowninFig.3,Eq.(6)agreesover-estimatesVVForsmallvaluewellwithofVEq.(5)forDSÀDsataldbE0XDS,Eq.(6)aareconstantstheforresultagivenofvalue(5).Theoflpowerindexand0d.
3.Drainavalanchebreakdown
causedDrain-to-sourcebreakdowninaMOSFETcancationbyin®nitemultiplication(MI)or®nitemultipli-beInimpactthewithMImodesubstrateofbreakdown,currentfeedbacktheelectriceect®eld(MF)in[32].theriseneltoaionizationregionissucientlylargeandgivesstratecurrentverybreakdowncurrentshouldlargemultiplicationfactorandthechan-feedbackbelargeenoughsuchthatthesub-takingplaceplace.doesOnnottheotheroccurisinsigni®canthand,beforeandtheMFbreakdowntheMIbreakdown®niteevenwhentheimpactmultiplicationmayfactortakeisbackgatebecausemodebiasthesubstratecurrentcanincreasetherenttoisofsmallbreakdownandenhancesthechannelcurrent.Thisandtheoccurswhenthesaturationcur-summariesthesubstratethephysicscurrentchanneloftheseispronounced.currentenhancementduetwobreakdownThismodes.sectiontheForcantlyelectricaMOStransistoroperatedinsaturationmode,electrons,and®eldcausesnearthedrainregionincreasessigni®-example,aretakingsweptanimpactinton-channelionization.thedrainMOSFETThegeneratedandenhancedasthe
anH.Wong/MicroelectronicsReliability40(2000)3±157
Fig.showing5.Drainnitetwomodescurrent±voltageofbreakdown.characteristicsSolidlinedepictedforatransistorofbreakdown.
modebreakdownanddashedcurveshowsthe®nitethemodein®-drainthecurrentsigni®cantlythesubstrate(seeFig.4).Ifwhereasthechanneltheholescurrent¯owentersintoassumingimpactholeareequal,thationizationwethehaveionizationregionratesisIDsatfor,electronandfurtherandIDMIDsat
8IsubMÀ1IDsat
9
Sincestratetheconductivityofthesubstrateisacrosscurrenteectthesubstrate.maycauseThisalow,thesub-voltagepronouncedresultsvoltagedropincreaseswhichanceisRthechannelmodi®escurrent.thetransistorinthebodydropwillIfbethesubstratebiasingresist-andB,thevoltageVBIsubRBMÀ1IDsatRB
10
Theandsubstrate[32]
eectsareductionvoltage,inVBthe,actsthresholdasthevoltage;back-gatenamelybiasVVpVp
TT0ÀgB2fBÀ2fB11wherebiasVT0con.andfisthethresholdvoltagewithoutsubstrateBisthesurface-inversionpotentialofsili-theThegisthechannelreductionthebodyeectcoecient.
changeofcurrent.inthresholdvoltageinturnenhanceschannelAlthoughcurrentdueaprecisetoVcalculationofBispossibleby
Fig.tage.
6.Plotofbreakdownvoltageasafunctionofgatevol-puttingequation,Eq.(10)intothecurrent-voltage(I±V)simulator,andyetmaybeimplementedinacircuitpresentedahere.theanalyticalForthesakeformofissimplicitytoocomplicatedandtotobeeectclearerby[32]
onthephysicalsaturationinsight,currentweassumecanbethatapproximatedthebodyhaveIDsatIDsat01bgVB
12
wherebodyproximationbiasIDsat0andisthebissaturationanempiricalchannelcurrentwithoutofshouldbeaccurateenoughparameter.forsmallThisvalueap-becomesUsingVB.
Eq.(10)forVBandEq.(12),expression(8)ID
MIDsat0
1ÀbgMÀ1RBIDsat0
13
BreakdownorvoltageaVtakesplacewhenMapproachestoin®nite0DSis
ÀVDsataldE0r1XItoccurswhenthedrainVBDIVDsatldE0aÀ0
1ar
14
Fora®niteimpact(13),0VDSweÀhaveVDsataldE0r
1,multiplicationsubstitutingEq.(6)factorintoEq.or
ID
IDsat0
1Àar01bgRBIDsat0
VDSÀVDsat
ldE0
Then,breakdownisalsopossiblewhenthedrainvol-
8H.Wong/MicroelectronicsReliability40(2000)3±15
tageisgivenby
VBDFVDsatldE0Âa01bgRBIDsat0
ÃÀ1ar
16
At(circles)Fig.thisvalue5thedenominatorofEq.(16)goestozero.forI±plotsVcharacteristicsthemeasuredin(curves)thebreakdownandcalculatedregionlengthann-channelMFdeterminedmodeof1.44ofbreakdown,mmMOSandtransistorchanneltheproductwidthwitheectiveofchannelbg20Rmm.ForBcanbevoltageFig.andusingthecalculatedEq.(16)VforameasuredbreakdownDsatandIimental5,thecalculatedresultsagreewellDsat0withXAstheshownexper-involtagedoesindata.theSlightlyrangebetweenlargeerrors8andare9foundfordrain®eldnotagreeverywellwithEq.(5)VbecauseinlowEq.electric(6)theslowlyMOSFETregion.Also®rstnotedecreasesthattherapidlybreakdownandthenvoltageincreasesofFig.but6).(forSimilarVGb3V)asthegatevoltageincreases(seeobservedwithouttageturnaroundanyexperimentalinterpretation,resultswerealsoreported,behaviorbyMitros[54].ThegivencanmentinEqs.beexplainedofthebreakdownvol-(14)withthebreakdownvoltagecan®nitebeincausedthedrainandbyeithercurrent(16).in®niteaboutThesigni®cantmultiplicationitssaturationenhance-(MI)valueoreecttric(MF).multiplicationInthewithsubstratecurrentfeedbacklarge®eldintheimpactMIionizationmodeofbreakdown,regionissucientlytheelec-Inenoughaddition,andresultstheinchannelaverylargecurrentmultiplicationshouldbefactor.largeinsigni®cantsuchthisandthatthetheMFsubstratebreakdowncurrentcannotfeedbackoccur.InisbeVapproximatedmodeofbreakdown,bythethedrainbreakdownsaturationvoltagecan1voltage,
TheDsat,plusaconstantoset,ldE0aÀar
(seeconstantsosetdataandvalueprocessisgoverned0
Eq.(14)).parameters.fairlybytheionizationtothisrepresentedmodeofindashcurvesinFig.The5areexperimentalattributedmultiplicationBreakdownoccursfactormaybreakdown.
takeis®nite.placeThisevenmodewhenoftheimpactchannelwhenrentcurrenttheenhancementsaturationcurrentduetotheissmallbreakdownandthearethangovernedispronounced;bythenamely,channelbreakdownsaturationcharacteristicssubstratecur-currentrathercurrentthesoliddown.curvesisgateafunctionbiasaloneinFig.5ofaretheevenduegatethoughthesaturationtobias.thisDatamodeplottedofbreak-inshouldAccordingurationincreasewithtoEq.thegate(16),voltagethebreakdownasthevoltageHowever,voltagedecreasesbecauseisalmostthedirectlysecondproportionaldraintosat-VG.becomesfasterthantheincreasetermofVinEq.(16)DsatasVGdecreasewithlarger,thethegatebreakdownvoltageforvoltagetheMFturnsmodeoutof
aFig.nellength.
7.Plotofdrainbreakdownvoltageasafunctionofchan-breakdown.voltageAsdescribedinEq.Idecreasesparameters.andasisgovernedthedrain(16),bysaturationthebreakdownacurrent,Dsat0,increasestomodeincreaseReducingthebreakdownofthevoltagebulkresistivitynumberofdeviceduetowillthehelpimentofbreakdown.ItwasfoundinMitros'exper-MFvoltage[54]almostincreasesthatforp-channeldevices,thebreakdownstantwasosetequalslightlywiththegatevoltageandisandtodrainsaturationvoltageplusacon-follows.observed.channelForn-typeThesenosubstratesiliconobservationscurrentfeedbackeectsubstratecanthatbeexplainedaslowdition,anddevices,thevoltagethedropbulkVresistivityisgenerallyusedinveryp-Bwillthanduethattheofionizationtheelectrons.rateAsofholesbeveryismuchsmall.smallerInad-drainFig.tothe7plotssubstratethecurrentaresult,nobreakdownchannel-lengthfeedbackdependencewasobserved.oferalthetrendbreakdownthatthevoltagebreakdownforVV.Thereisagen-theG1longchannelbychannellengthdevices.andSimilarreachesvoltageresultsasaturatedincreaseswithwerealsovalueforbreakdownMitros[54].IntheworkpresentedinRef.reportedgivendown,byEqs.voltage±channel(14)and(16).lengthForMIrelationships[32],themodeofbreak-areincreasesthetheasbreakdownthedrainvoltageofshort-channeldevicesofbreakdownbreakdown,channelbecomesthechannel-lengthshorter.saturationWhereasvoltageincreasesasdependenceforMFofmodetheRvoltageisgovernedbybothVDsatandsistanceBIDsatXNotethatthesaturationcurrentisapproximatelyproductisproportionalindependenttoofLchannelandÀ2providedwidthbulkre-that
andH.Wong/MicroelectronicsReliability40(2000)3±159
Fig.8.SchematicdiagramofPBT-inducedbreakdown.
theAndchannel-lengthsmalleratlowmodulationeectisinsigni®cant.breakdownthangatethebias,seconde.g.termVG1V,VDsatismuchterm.assumptions.ThetheoreticalvoltageisplotgovernedinFig.mainlyinEq.6isbasedby(17)theandonsecondthethesemFordevicewithchannellengthof0.44Lm,2eect.lawthebreakdownbecauseofvoltagethechannel-lengthdivergesslightlymodulationfromtheionizationInaddition,theelectroninjectedintothewillregionbytheparasitictransistor[33,41,42]impactnelalsoreducethebreakdownvoltageofshort-chan-lationFordevices.
short-channeldevices,thechannel-lengthmodu-channeleectbecomessigni®cantandwillenhancetheisdencereduced.current;Thus,consequently,thethebreakdownvoltagefound[38]asthatisthenolongerpoweraccurate.lawchannel-lengthRecentstudydepen-[32]whichafunctionofbreakdownthedrainvoltagesaturationcouldcurrent,beexpressedIDsat0,wellcharacteristicsasisthegovernedthresholdbythevoltage.gatevoltage,Henceaspecttheratio,asproperlyofashort-channeltransistorbreakdowncanbethatHowever,thedescribeddrainusingtheproposedmodelsprovidedsiticpunchthroughtransistorforverysaturationcurrentismodeledprecisely.[8]short-channeldeviceswherepara-ordierentMFmode[43±45]inducedofbreakdownmayoccurbreakdownbefore[33,41±44]theMImodeordownI±Vtheoriescharacteristics.areneededtakingformodelingplace,completelythebreak-4.Parasitictransistor
downParasiticcouldbipolaronlytransistorbefound(PBT)inainducedshort-channel
break-MOSFETtutednarrowbysource,wheresubstratethebaseandwidthdrain,oftheseePBTFig.(consti-nounced.thatrentWhenthethecollectorPBTiscurrentofPBT8)isispro-soimpactwilltheionizationenhancetheturnon,thecollectorcur-regionchargecarriers¯owingintothe[41].drain-to-sourcebyThePBT-inducedbreakdownnearthedrainandreducesbreakdownvoltagehasbeensigni®cantlymodeledcurrentHsuetdropisal.calculated[41].However,basedonintheirthemodel,thedraingivenacrossmodelforhascalculatingthesubstrateovercomethisthedrawbackbreakdownandnoexplicitmeasuredvoltage[33].
voltage.formulaArecentistheForaMOStransistoroperatedinsaturationmode,dropsubstratesubstrate)acrosscurrentmaycauseapronouncedvoltagerentjunctionthesubstratesuchthattheemitter(source-proximated(Iisforwardlybiased.Thetotalcur-D)enterstheimpactionizationregioncanthebyIbeap-DsatIC(whereICisthecollectorofernedparasitictransistor).Thecollectorcurrentaregov-reversebythecommon-baseampli®cationfactoraBandoftheparasiticsaturationtransistorcurrentandofthecanemitterbeapproximatedjunction(IasES)ICaBIESexp
qIsubRB
kT17
Assumingproductcanunitybeapproximatedemitterinjectionbyeciency,theaB±IESaBIES
qAjDnn2LinNAB
cschh
LLn18
Fig.istics.
9.PlotofsimulatedPBT-inducedbreakdowncharacter-10H.Wong/MicroelectronicsReliability40(2000)3±15
whereAj,ni,NAB,Laretheeectiveareaofemitter±basejunction,intrinsiccarrierconcentration,substratedopingconcentration,andtheeectivechannellengthoftheMOSFET,respectively.Dn,Lnarethediusioncoecientanddiusionlengthofelectroninthesub-strate,respectively.ThedraincurrentatbreakdownisIDMIDsatIC
19
IDsatZlnZ1lnaBIES020
whereZMMÀ1qRBakT
UsingEq.(6),thebreakdownvoltagecanbeap-proximatedby[33]
hpiÀ1ar
VBDBIVDsatldE0a01qRBakTZ
21
PuttingEq.(17)intoEq.(19)andconsideringdIDadM4Iatbreakdown,wehave[33]
Fig.9showsthebreakdowncharacteristicsforann-channelMOStransistorwithchannellengthof0.85mmandsubstrateresistanceof100OsimulatedusingMINIMOS.Twomodesofbreakdowncanbe
Fig.10.ChannelcarriersdistributionduringMFandPBTmodesofbreakdown.(a)electrondistributionwhenparasitictransistoriscuto;(b)electrondistributionwhenparasitictransistoristurnedon;(c)holedistributionwhenparasitictransistoriscuto;(d)holedistributionwhenparasitictransistoristurnedon.
H.Wong/MicroelectronicsReliability40(2000)3±1511
Fig.10(continued)
observedinthis®gure.ForVG0X5V,onlyonebreakdownhappensandthebreakdownvoltageisabout8.5V.ThisbreakdownisduetoMFbreakdownmechanism.Asthegatevoltageincreases,thebreak-downoccurstwotimesforsamegatebias.Fordraincurrentlessthan0.6A,the®rstbreakdownoccursandthebreakdownvoltagedecreasesasthedraincurrentorgatevoltagerises.ThisphenomenoncanbeexplainedwiththeMFbreakdownmechanismaspro-posedearlier[32].Fordraincurrentgreaterthan0.6A,thesecondbreakdown(PBT-inducedbreakdown)occurs.Unlikethe®rstbreakdown,thebreakdownvol-tageincreaseswithVG.AsatlargeVG,IDsatincreasesandZinEq.(21)decreases.Consequently,thebreak-downvoltageincreases.
Fig.10showstheeectofparasitictransistoronthedistributionoflateralelectroncurrentdensity.InFig.10(a),thebiasconditionsareVG1VandVD7VwhichcorrespondstotheMFmodeofbreakdownshowninFig.9.Thelateralelectroncurrentdensityismainlycontributedbythechannelcurrent.InFig.10(b),thetransistorisoperatedatVG1VandVD8X4V.Underthesebiasingconditions,theparasitictransistor(PBT)isturnedon.ThecollectorcurrentofPBT(current¯owbeneaththeactivechannelregion)contributesthemajorcomponenttothelateralelectron
12H.Wong/MicroelectronicsReliability40(2000)3±15
VG1X0V.Thesolidlineshowninthe®gureiscalcu-latedusingEqs.(20)and(21)witheectivecross-sec-tionalareaofparasitictransistor(i.e.parameterAjinEq.(18))asa®ttingparameter.Furthereortsareneededforpreciseandsystematicestimationofthisparameterandthechangeofelectric®elddistributionsandtheimpactionizationlengthsmustbetakenintoaccountfordierentdevices.Nevertheless,ourtheor-eticalcalculationpredictstherighttrendofthechanneldependenceofthePBTbreakdownvoltage.ThedecreaseofPBTbreakdownwithshrinkingthechannellengthisduetoseveralmechanismstakeplaceintran-sistor.Asthechannellengthisreduced,boththeemit-tercurrentofthePBTandthedrainsaturationcurrentwillincrease.Consequently,moreelectron±holepairsaregeneratedandthebreakdownvoltageisreduced.5.Punchthrough
Fig.11.Plotofbreakdownvoltage(PBTmode)asafunctionofchannellength.
current.ThelateralelectroncurrentdensityisatleastoneordergreaterthanthatatthebiasgiveninFig.10(a).Amorecompletedpicturecanbeseenbyview-ingthetransversalholecurrentdensitydistribution.AsshowninFig.10(c),whentheparasitictransistorisincutomode,holecurrent¯owingfromdrainregiontothesubstrateregioncanbeobservedbecausetheMOStransistorisalreadyoperatedinthebreakdownregionwhereholesaregeneratedintheimpactionizationregionnearthedrain.WhenthePBTisturnedon(seeFig.10(d)),holecurrent¯owingfromdraintosub-strateisenhancedremarkably.InadditiontheholeconcentrationnearthesourceoftheMOStransistorisreducedsigni®cantlybecausethesourcenowactsastheemitteroftheparasiticnpntransistor.
Fig.11plotsthePBTbreakdownvoltageasafunc-tionofchannellengthforRB100Oat300Kand
Punchthrough(PT)hasbeenoneofthemajorcon-straintsforfurtherMOStransistorsminiaturization[43±45].EitanandFrohman-Bentchkowsky[45]furtherfoundthatthepunchthroughwilloccuratlowdrainbiasesduetothesurfaceminoritydiusioncur-rentwhenthedrain/sourcedepletionregionscontacted.Theminoritycarrierinjectioncanbefurtherenhancedwiththeband-bendingduetogate-inducedsurfacespacecharges.Punchthrougheectisparticularlysig-ni®cantinshortchanneldeviceswithalowchanneldopingconcentration.Theoretically,thepunchthroughconditioncanbeestimatedbyequatingthedrainde-pletionregionwidthandtheeectivechannellength.However,punchthroughcouldoccuratadrainvoltagefarbelowthatrequiredformakingthedepletionregionsconnectedbecauseofdraininducedbarrierlowering(DIBL)[45,55].Phenomenologically,punch-throughwasde®nedasthevalueofdrainvoltageatwhichthedraincurrentreachesavalueof1mA[56].Thisiscertainlynotagoodde®nition.Itcannotbeusedtodierentiatepunchthroughwithothermechan-
Table2
Comparisonofthedevice-parameterandoperation-conditiondependenciesofvariousbreakdownmechanismsParameters
BreakdownmodeIn®nitemultiplicationbreakdownvoltage
ChannellengthqSubstrateresistanceqGatevoltageQTemperatureQ
q±W±
FinitemultiplicationbreakdownvoltageqqQqw
PBT-induced
breakdownvoltagewWqQ
Punchthrough
characteristicvoltageqQqw
H.Wong/MicroelectronicsReliability40(2000)3±1513
ismeectandwithfornumericalatall.evenThedoesnotconsiderthechannelwidthsimulationpunchthrough[43,44],eectsanareanalyticaloftenstudiedhowever.predictingimentalTablethe2summarizespunchthroughthevoltagenumericalisstillandlacking,modelexper-studiesresultstheliteratures[43,45].Althoughthesepunchthroughcannotparametervoltage,providethemethodqualitativeforestimatingresultsonthepunchthroughdependencieseectinthearedevicestillusefuldesign.tominimizethethe6.Concludingremarks
MOSFETVariousbreakdownincreaseshavephenomenainshort-channelvaluesofdraincurrentbeenbeyondreviewed.thenormalThesigni®cantoperationmode),couldof(2)®nitebeduemultiplicationto(1)avalanchebreakdown(MItorthesubstratecurrent(MF),andwith(3)positiveparasiticfeedbacktransis-(PT).(PBT)dependenciesThoseinducedbreakdownbreakdownmechanismsand(4)havepunchthroughdierentconditions.
onthedeviceparametersandoperationfourTable2summarizesthevariousmodesdiscussedtheandpunchthroughmechanisms.willVoltagedependenciesreducedofallaccordinglybreakdownoftheasbreakdownchannellengthbecomesshorter.However,thebreakdownvoltagedecreasesdecreasesofthefaster®niteandmultiplicationPBTmodeofofreducingMF,PBT,slower.andThePTbreakdownmodesvoltagedegradationbreakdownchannelthesubstrateresistancecanorbeincreasingsuppressedthebyincreasedoping.thechannelAsmentioneddopingtoearlier,higherthanitis10unwise16cmtoÀ3foraddition,signi®cantmobilitydegradationcannotwefoundthattheMImodewillofencounter.breakdownInandmaintainconstant-®eldbeimprovedscalingbyvaryingruleshouldthechanneldopingdenceMIofitsbreakdowncharacteristics.beappliedtocharacteristics,Fortemperaturedepen-turemodeofbreakdownisaweakfunctionitisshownthatpunchthroughonly.Therises.voltagebreakdownvoltageofMFofmodetempera-andperatureThisobservationisdecreasemainlygovernedasthetemperaturebytherent.temperatureThedependencebreakdownofIandthesubthresholdtem-Dsatcur-breakdownincreases.WhereasvoltagefallsforPBTquicklymode,asthethedueisticstothevoltagestrongincreasestemperatureasthedependenttemperaturerisesingitsofofbipolartransistor.Itwasreportedthatcharacter-operat-temperatureperformanceMOSdevicesigni®cantly.incryogenicHowever,regionwouldtheimprovedistinctcharacteristicsdependenciesFinally,itshouldcallforbeacarefulonthesenotedthatreviewdrainbreakdownmostonofthistheissue.device
modelingbevalidityvalid®eldofforbasedextendingdeeponsubmicronsomeapproximationsandmaynotShockleydevices.modeltoRegardlesshighelectrictherate[57].inregion,ballisticallyTheSiitwasfoundthattheimpactionizationfractionhasgreatofhigh-anisotropyenergyinlowenergyregionmoretravelalongthechannelcarriersareexpectedwhichquasi-tobeconstantsigni®cantmodel®eldscalingindeeprulessubmicrontransistorseventheextremelyforimpactionizationareisexpectedused[58±60].whichAnewimpactgoingionizationdicult.constantsAlternatively,anewsetofShockleywillbedevicestousetheShockley'sismodelindispensableinifwearedeep-submicronwithanacceptablecateddeviceaccuracy.Itdeep-submicronseemsthatthemustbetoobtainedbemodeledfromaccurately.characteristicssimulations.
Instead,areprecisetoocompli-resultsReferences
[1]KrautschneiderdownWH,KohlhaseA,TerletzkiH.[2]MicroelectronandreliabilityShahReliabproblems1997;37:19±37.
ofgigabitCMOScircuits.Scaling
[3]inTakedatheA,ULSIYangP.MOStechnologytrendsandchallenges
E.era.ChallengesMicroelectronforReliabgiga1997;37:1301±7.scale[4]MicroelectronAcovicdegradationA,LarosaReliabmechanismsG,1997;37:985±1001.
integration.
SuninYC.Areviewofhotcarrier
[5]ReliabMOSFETs.MicroelectronWilliams1996;36:845±69.
HoltonreliabilityWC.SC,ScalingHulfachortrendsRB,forKimKW,LittlejohnMA,
[6]TransCappellettiElectroninchannel-engineereddeviceperformanceandP.DevicesFlashmemory1998;45:254±60.
n-MOSFET's.IEEEreliability.[7]ReliabThomas1998;38(2):185±8.
Microelectron
supplementRW.toAntheanalysisSIAroadmap.ofthequalityMicroelectronandreliability
Reliab[8]1998;38:861±8.
WongconductorH,ChengtransistorYC.Instabilitiesofmetal-oxide-semi-[9]itsDiMariagateoxideinammonia.withhighJAppltemperatureannealingofdiesDJ,StathisJH.TrappingPhysand1990;67:7132±8.trapcreationstu-[10]®lmsonDegraeveonnitridedsilicon.JandApplreoxidized-nitridedPhyssilicondioxidenewR,RousselPH,Groeseneken1991;70:1500±9.
G,MaesHE.A
oxideanalyticbreakdownmodelforstatisticsthedescriptionofoftheintrinsic[11]MicroelectronNafriasiliconM,SuneReliabJ,Aymerich1996;36:1639±42.
ultrathinoxides.X.[12]1996;36:871±905.
dioxide®lms:areview.BreakdownMicroelectronofthinReliabgate
VincentreliabilityE,inBruyeredeepS,PapadasC,MortiniP.Dielectric
[13]ultrathinsubmicrontechnologiesfromthintoDuvvuryoxides.MicroelectronReliab1997;37:1499±506.CMOSC,AmerasekeraA.ESDissuesfor24.
technologies.MicroelectronReliab1996;36:907±advanced
14H.Wong/MicroelectronicsReliability40(2000)3±15
[14]WadaT.StudyofthesoftleakagecurrentinducedESD
onLDDtransistor.MicroelectronReliab1996;36:1707±10.
[15]MeneghessoG,LuchiesJRM,KuperFG,MouthaanAJ.
TurnonspeedofgroundedgateNMOSESDprotectiontransistors.MicroelectronReliab1996;36:1735±8.
[16]FriedR,BlecherY,FriedmanS.StructuresforESDpro-tectioninCMOSprocesses.MicroelectronReliab1997;37:1111±20.
[17]NingTH,OsburnCM,YuHN.Emissionprobabilityof
hotelectronsfromsiliconintosilicondioxide.JApplPhys1977;48:286±93.
[18]CottrellRE,TroutmanRR,NingTH.Hot-electron
emissioninn-channelIGFETs.IEEETransElectronDevices1979;ED-26:520±33.
[19]FischettiMV,LauxSE,DiMariaDJ.Thephysicsof
hot-electrondegradationofSiMOSFET's:Canweunderstandit?ApplSurfSci1989;39:578±96.
[20]HuC,TamSC,HsuFC,KoPK,ChanTY.Hot-elec-tron-inducedMOSFETdegradation:model,monitor,andimprovement.IEEETransElectronDevices1985;ED-32:375.
[21]HeremansP,BellensR,GroesenekenG,MaesH.
Consistentmodelforthehot-carrierdegradationinn-channelandp-channelMOSFET's.IEEETransElectronDevices1988;ED-35:2194±208.
[22]WongH,ChengYC.Modelingofhotelectroninduced
characteristicsdegradationofn-channelMOSFET.Solid-StateElectron1993;36:1469±75.
[23]WongH,ChengYC.Generationofinterfacestatesat
thesilicon/oxideinterfaceduetohotelectroninjection.JApplPhys1993;74:7364±8.
[24]DiMariaDJ.Trapcreationinsilicondioxideproduced
byhotelectrons.JApplPhys1989;65:2342±56.
[25]HuCM.ACeectsinICreliability.Microelectron
Reliab1996;36:1611±7.
[26]LunenborgMM,DegraaHC,MouthaanAJ,Verweij
JF.ComprehensivephysicalmodelingofNMOSFEThotcarrierinduceddegradation.MicroelectronReliab1996;36:1667±70.
[27]JahanC,BarlaK,GhibaudoG.Investigationofstress
inducedleakagecurrentinCMOSstructureswithultrathingatedielectrics.MicroelectronReliab1997;37:1529±32.
[28]DuminDJ.Characterizingwearout,breakdownandtrap
generationinthinsiliconoxide.MicroelectronReliab1997;37:1029±38.
[29]CartierE.Characterizationofthehotelectroninduced
degradationinthinSiO2gateoxides.MicroelectronReliab1998;38:201±11.
[30]DennardRH,GaensslenFH,YuHN,RideoutVL,
BassousE,LeblancA.IEEEJSolid-StateCircuits1974;SC-9:256.
[31]KoPK.Approachestoscaling.In:EinspruchNG,
GildenblatG,editors.AdvancedMOSdevicephysics.NewYork:AcademicPress,1989.p.1.
[32]WongH.Aphysicallybaseddrainavalanchemodelfor
MOSFET's.IEEETransElectronDevices1995;ED-42:2197±202.
[33]WongH.Modelingoftheparasitictransistor-induced
drainbreakdowninMOSFET's.IEEETransElectronDevices1996;ED-43:2190±6.
[34]BaccaraniG,WordemanMR,DennardRH.IEEETransElectronDevices1984;ED-31:452.
[35]
MaesW,DeMeyerK,VanOverstraetenR.Impaction-izationinsilicon:areviewandupdate.Solid-StateElectron1990;33:705±18.
[36]
SchutzA,SelberherrS,PotzlHW.Atwo-dimensionalmodeloftheavalancheeectinMOStransistors.Solid-StateElectron1982;25:177±83.
[37]
ToyabeT,YamaguchiK,AsaiS,MockMS.Anumeri-calmodelofavalanchebreakdowninMOSFET's.IEEETransElectronDevices1978;ED-25:825±32.
[38]
ToyabeT,AsaiS.Analyticalmodelsofthresholdvoltageandbreakdownvoltageofshort-channelMOSFET'sde-rivedfromtwo-dimensionalanalysis.IEEETransElectronDevices1979;ED-26:453±61.
[39]
HsuFC,KoPK,TamS,HuC,MullerRS.Ananalyti-calbreakdownmodelforshort-channelMOSFET's.IEEETransElectronDevices1982;ED-29:1735±40.
[40]
LauxSE,GaensslenFH.Astudyofchannelavalanchebreakdowninscaledn-MOSFET's.IEEETransElectronDevices1987;ED-34:1066±73.
[41]
HsuFC,MullerRS,HuC.Asimpli®edmodelofshort-channelMOSFETcharacteristicsinthebreakdownmode.IEEETransElectronDevices1983;ED-30:571±6.[42]
BusattoG,PersianoGV,StrolloAGM,SpiritoP.ActivationofparasiticbipolartransistorduringreverserecoveryofMOSFETsintrinsicdiode.MicroelectronReliab1997;37:1507±10.
[43]
HsuFC,MullerRS,HuC,KoPK.Asimplepunch-throughmodelforshort-channelMOSFET's.IEEETransElectronDevices1983;ED-30:1354±9.
[44]
FuKY,TsangYL.OnthepunchthroughphenomenoninsubmicronMOStransistor.IEEETransElectronDevices1997;ED-44:847±55.
[45]
EitanB,Frohman-BentchkowskyD.Surfaceconductioninshort-channelMOSdeviceasalimitationtoVLSIscaling.IEEETransElectronDevices1982;ED-29:254.[46]WolPA.Theoryofelectronmultiplicationinsiliconandgermanium.PhysRev1954;95:1415±20.
[47]ShockleyW.Problemsrelatedtop±njunctionsinsilicon.Solid-StateElectron1961;2:35±67.
[48]
OkutoY,CrowellCR.Energy-conservationconsider-ationsinthecharacterisationofimpactionizationinsemiconductors.PhysRevB1972;6:3076±81.
[49]
ChanTY,KoPK,HuC.Dependenceofchannelelectric®eldondevicescaling.IEEEElectronDeviceLett1985;EDL-6:551±3.
[50]
ElMansyYA,BoothroydAR.Asimpletwo-dimen-sionalmodelforIGFEToperationinthesaturationregion.IEEETransElectronDevices1977;ED-24:254±62.
[51]
WongH,PoonMC.Approximationofthelengthofvel-ocitysaturationregioninMOSFET's.IEEETransElectronDevices1997;ED-44:2033±6.
[52]
SlotboomJW,StreutkerG,DavidsGJT,HartogPB.Surfaceimpactionizationinsilicondevices.IEEEIEDMTechnicalDigest1987:494.
[53]
AroraND,SharmaMS.MOSFETsubstratecurrent
H.Wong/MicroelectronicsReliability40(2000)3±15
modelforcircuitsimulation.IEEETransElectronDevices1991;ED-38:1392±8.
[54]MitrosJC.EmpiricalmodelofMOSFETbreakdown
voltages.IEEETransComputer-AidedDesign1993;CAD-12:511±5.
[55]BouhdadaA,BakkaliS,TouhamiA.Modelingofgate
induceddrainleakageinrelationtotechnologicalpar-ametersandtemperature.MicroelectronReliab1997;37:649±52.
[56]KoyanagiM,LewisAG,MartinRA,HuangTY,Chen
JY.Hot-electron-inducedpunchthrough(HEIP)eectinsubmicrometerPMOSFETs.IEEETransElectronDevices1987;ED-34:839.
15
[57]SanoN,YoshiiA.Impact-ionizationratenearthresholds
inSi.JApplPhys1994;75:5102.
[58]EitanBB,Frohman-BentchkowskyD,ShappirJ.
Impactionizationatverylowvoltagesinsilicon.JApplPhys1982;53:1244.
[59]SanoN,TomizawaM,YoshiiA.Temperaturedepen-denceofhotcarriereectsinshort-channelSi-MOSFET's.IEEETransElectronDevices1995;ED-42:2211.
[60]FischettiMV,LauxSE,CrabbeE.Understandinghot-electrontransportinsilicondevices:isthereashort-cut?JApplPhys1995;78:1058.
因篇幅问题不能全部显示,请点此查看更多更全内容