...estimation using an adaptive unscented Kalman filter

发布网友 发布时间:2024-10-22 20:55

我来回答

1个回答

热心网友 时间:2024-10-23 02:05

本文提出了一种用于姿态估计的鲁棒自适应无迹卡尔曼滤波器(RAUKF)。算法利用单位四元数表示姿态,并采用outlier detector异常值检测算法识别UKF更新innovation中的突变,通过covariance matching协方差匹配的自适应策略在线调整测量协方差矩阵。实验表明,该方法对磁场干扰和线性加速度等扰动具有鲁棒性,优于其他算法。

姿态估计在多个领域至关重要,如人体运动跟踪、增强现实和无人机导航。这些应用通常依赖姿态和航向参考系统(AHRS)提供方向信息。小型AHRS通过结合磁场、速率和重力(MARG)传感器的信息来估计方向。然而,这种方法的朴素实现可能不精确,因为磁力计测量值容易受到周围铁制品的影响,而加速度计不仅测量重力方向,还测量线性加速度。这些情况下,很难将磁场扰动和线性加速度从地球磁场和重力场中分离出来,以准确计算姿态。

本文提出了一种解决方案,以解决上述问题。该算法使用单位四元数表示姿态,并采用outlier detector异常值检测算法识别UKF更新innovation中的突变。通过covariance matching协方差匹配的自适应策略在线调整测量协方差矩阵。这使得算法对磁场干扰和线性加速度等扰动具有鲁棒性。实验结果表明,该方法优于其他算法。

本文的主要贡献是提出了一种用于姿态估计的鲁棒自适应无迹卡尔曼滤波器(RAUKF)算法。该算法对于加速度计和磁力计上的快速和慢速扰动具有鲁棒性,并且据作者所知,是第一种具有这种特征的算法,可以准确且一致地使用四元数表示姿态。所提出的算法使用从MARG传感器收集的真实实验数据进行测试。所提出算法的性能与非自适应UKF、文献[9]中提出的基于互补滤波器的开源算法以及用于我们实验中使用的MARG设备中嵌入的商业算法进行对比,该算法使用机械手进行验证。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com