发布网友 发布时间:2022-04-24 02:48
共2个回答
热心网友 时间:2023-01-28 12:14
我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家莱尼茨尔(Reinitzer)发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。
液晶显示的原理是液晶在不同电压的作用下会呈现不同的光特性.液晶在物理上分成两大类,一类是无源Passive的(也称被动式),这类液晶本身不发光,需要外部提供光源,根据光源位置,又可以分为反射式和透射式两种.Passive液晶显示的成本较低,但是亮度和对比度不大,而且有效视角较小,彩色无源液晶显示的色饱和度较小,因而颜色不够鲜艳. 另一类是有电 源的,主要是TFT (Thin Film Transitor).每个液晶实际上就是一个可以发光的晶体管,所以严格地说不是液晶.液晶显示屏就是由许多液晶排成阵列而构成的,在单色液晶显示屏中,一个液晶就是一个象素,而在彩色液晶显示屏中则每个象素由红绿蓝三个液晶共同构成.同时可以认为每个液晶背后都有个8位的寄存器,寄存器的值决定着三个液晶单元各自的亮度,不过寄存器的值并不直接驱动三个液晶单元的亮度,而是通过一个”调色板”来访问. 为每个象素都配备一个物理的寄存器是不现实的,实际上只配备一行的寄存器,这些寄存器轮流连接到每一行象素并装入该行内容,将所有象素行都驱动一遍就显示一个完整的画面(Frame).
液晶从形状和外观看上去都是一种液体,但它的水晶式分子结构又表现出固体的形态。像磁场中的金属一样,当受到外界电场影响时,其分子会产生精确的有序排列;如对分子的排列加以适当的控制,液晶分子将会允许光线穿透;光线穿透液晶的路径可由构成它的分子排列来决定,这又是固体的一种特征。液晶是一种有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。液晶屏(Liquid Crystal Display,以下简称LCD)第一个特点是必须将液晶灌入两个列有细槽的平面之间才能正常工作。这两个平面上的槽互相垂直(90度相交),也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。LCD的第二个特点是它依赖极化滤光片和光线本身,自然光线是朝四面八方随机发散的,极化滤光片实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线,极化滤光片的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。 只有两个滤光片的线完全平行,或者光线本身已扭转到与第二个极化滤光片相匹配,光线才得以穿透。LCD正是由这样两个相互垂直的极化滤光片构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光片之间充满了扭曲液晶,所以在光线穿出第一个滤光片后,会被液晶分子扭转90度,最后从第二个滤光片中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光片挡住。以Synaptics TDDI技术为例,是将触摸控制器和显示驱动器整合到了单一芯片中,这减少了组件数量,简化了设计。ClearPad 4291支持混合多点内嵌式设计,因利用了液晶显示器(LCD)中的已有层,因而无需分立式触控传感器。ClearPad 4191又前进了一步,利用了LCD中已有的电极,因此实现了更加简洁的系统架构。这两款解决方案都使触控屏更薄、显示器更明亮,有助于改进智能手机和平板电脑设计的整体美学效果。对于反射式的TN(扭转向列型 Twisted Nematic)液晶显示器其构造由如下几层组成:极化滤光片、玻璃、相互绝缘又透明的纵横两组电极、液晶体、电极、玻璃、极化滤光片、反射片。 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。
在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板,外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。 每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC与印刷电路板相连接。
在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白色。为了达到在面板上的每一个像素都能产生你想要的色彩,多个冷阴极灯管必须被使用来当作显示器的背光源。 TFT-LCD液晶显示器的结构与TN-LCD液晶显示器基本相同,只不过将TN-LCD上夹层的电极改为FET晶体管,而下夹层改为共通电极。
TFT-LCD液晶显示器的工作原理与TN-LCD却有许多不同之处。TFT-LCD液晶显示器的显像原理是采用“背透式”照射方式。当光源照射时,先通过下偏光板向上透出,借助液晶分子来传导光线。由于上下夹层的电极改成FET电极和共通电极,在FET电极导通时,液晶分子的排列状态同样会发生改变,也通过遮光和透光来达到显示的目的。但不同的是,由于FET晶体管具有电容效应,能够保持电位状态,先前透光的液晶分子会一直保持这种状态,直到FET电极下一次再加电改变其排列方式为止。
热心网友 时间:2023-01-28 13:48
用动态驱动按照矩阵的排列,将每行每列电极连在一起,同时给每行每列加上选通脉冲和驱动脉冲,形成逐行顺序的扫描像素驱动