您的当前位置:首页正文

维西傈僳族自治县第一中学校2018-2019学年高二上学期第二次月考试卷数学

2020-02-15 来源:客趣旅游网
精选高中模拟试卷

维西傈僳族自治县第一中学校2018-2019学年高二上学期第二次月考试卷数学

班级__________ 姓名__________ 分数__________

一、选择题

1. 设a,b,c,∈R+,则“abc=1”是“A.充分条件但不是必要条件

”的( )

B.必要条件但不是充分条件

C.充分必要条件 D.既不充分也不必要的条件

2. 二项式(x2﹣)6的展开式中不含x3项的系数之和为( )

A.20 B.24 C.30 D.36

3. 已知两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行,则实数a等于( ) A.1或﹣3 B.﹣1或3 C.1或3

D.﹣1或﹣3

4. 函数f(x)=xsinx的图象大致是( )

A. B.

C. D.

5. 已知函数f(x)2sin(x)(0小距离为

2)与y轴的交点为(0,1),且图像上两对称轴之间的最

,则使f(xt)f(xt)0成立的t的最小值为( )1111] 22A. B. C. D.

3632abc6. 在ABC中,A60,b1,其面积为3,则等于( )

sinAsinBsinC2393983A.33 B. C. D. 32327. 数列{an}中,a11,对所有的n2,都有a1a2a3ann,则a3a5等于( )

25256131A. B. C. D.

91616158. 下列各组表示同一函数的是( )

第 1 页,共 16 页

精选高中模拟试卷

2)

A.y=与y=(

B.y=lgx2与y=2lgx

C.y=1+与y=1+

D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)

9. 空间直角坐标系中,点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C的坐标为( ) A.(4,1,1) B.(﹣1,0,5) 个数为( ) A.1

B.2

C.(4,﹣3,1)

C.3

D.(﹣5,3,4)

D.4

10.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的

x2y211.F1,F2分别为双曲线221(a,b0)的左、右焦点,点P在双曲线上,满足PF 1PF20,

ab31若PF1F2的内切圆半径与外接圆半径之比为,则该双曲线的离心率为( )

2A.2 B.3 C. 21 D. 31

【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.

12.如图,该程序运行后输出的结果为( )

A.7

B.15

C.31

D.63

二、填空题

13.长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,异面直线A1C1与CE所成角的余弦值为

,且四边形ABB1A1为正方形,则球O的直径为 .

14.在ABC中,角A、B、C的对边分别为a、b、c,若ccosBa则边c的最小值为_______.

13b,ABC的面积Sc, 212【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能

第 2 页,共 16 页

精选高中模拟试卷

力.

15.已知面积为

的△ABC中,∠A=

若点D为BC边上的一点,且满足

=

,则当AD取最小时,

BD的长为 .

16.在(2x+

6

)的二项式中,常数项等于 (结果用数值表示).

17.若函数f(x)=logax(其中a为常数,且a>0,a≠1)满足f(2)>f(3),则f(2x﹣1)<f(2﹣x)的解集是 .

18.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=x3x,对任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,则x的取值范围为_____.

三、解答题

19.已知数列{an}是各项均为正数的等比数列,满足a3=8,a3﹣a2﹣2a1=0. (Ⅰ)求数列{an}的通项公式

(Ⅱ)记bn=log2an,求数列{an•bn}的前n项和Sn.

20.已知函数f(x)(1)求A(2)若B

21.设函数f(x)=mx2﹣mx﹣1.

x317x的定义域为集合A,B{x|2x10},C{x|ax2a1}

B,(CRA)B;

CB,求实数a的取值范围.

第 3 页,共 16 页

精选高中模拟试卷

(1)若对一切实数x,f(x)<0恒成立,求m的取值范围; (2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.

22.(本小题满分12分)

一个盒子里装有编号为1、2、3、4、5的五个大小相同的小球,第一次从盒子里随机抽取2个小球,记下球的编号,并将小球放回盒子,第二次再从盒子里随机抽取2个小球,记下球的编号. (Ⅰ)求第一次或第二次取到3号球的概率;

(Ⅱ)设为两次取球时取到相同编号的小球的个数,求的分布列与数学期望.

23.如图,四边形ABCD内接于⊙O,过点A作⊙O的切钱EP交CB 的延长线于P,己知∠PAB=25°. (1)若BC是⊙O的直径,求∠D的大小;

2

(2)若∠DAE=25°,求证:DA=DC•BP.

第 4 页,共 16 页

精选高中模拟试卷

24.(本小题满分12分)

已知数列{an}的前n项和为Sn,且满足Snn2an(nN*). (1)证明:数列{an1}为等比数列,并求数列{an}的通项公式;

n2n(2)数列{bn}满足bnanlog2(an1)(nN*),其前n项和为Tn,试求满足Tn2015的

2最小正整数n.

【命题意图】本题是综合考察等比数列及其前n项和性质的问题,其中对逻辑推理的要求很高.

第 5 页,共 16 页

精选高中模拟试卷

维西傈僳族自治县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题

1. 【答案】A

【解析】解:因为abc=1,所以=

≤a+b+c.

显然成立,但是abc=6≠1,

”的充分条件但不是必要条件.

,则

=

当a=3,b=2,c=1时,

所以设a,b,c,∈R+,则“abc=1”是“故选A.

2. 【答案】A

【解析】解:二项式的展开式的通项公式为Tr+1=故展开式中含x项的系数为

3

•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,

•(﹣1)3=﹣20,而所有系数和为0,

不含x项的系数之和为20,

3

故选:A.

【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

3. 【答案】A

【解析】解:两条直线ax+y﹣2=0和3x+(a+2)y+1=0互相平行, 所以=

解得 a=﹣3,或a=1. 故选:A.

4. 【答案】A

【解析】解:函数f(x)=xsinx满足f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),函数的偶函数,排除B、C, 因为x∈(π,2π)时,sinx<0,此时f(x)<0,所以排除D, 故选:A.

【点评】本题考查函数的图象的判断,函数的奇偶性以及函数值的应用,考查分析问题解决问题的能力.

5. 【答案】A 【解析】

第 6 页,共 16 页

精选高中模拟试卷

点:三角函数的图象性质. 6. 【答案】B 【解析】

113bcsinAbcsin600bc3,所以bc4,又b1,所224222220以c4,又由余弦定理,可得abc2bccosA14214cos6013,所以a13,则试题分析:由题意得,三角形的面积Sabca13239,故选B. sinAsinBsinCsinAsin6003考点:解三角形.

【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到7. 【答案】C 【解析】

试题分析:由a1a2a3abca是解答的关键,属于中档试题.

sinAsinBsinCsinAann,则a1a2a32n2,所以a1),两式作商,可得ann1(n2(n1)2325261a3a522,故选C.

2416考点:数列的通项公式.

8. 【答案】C

=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.【解析】解:A.y

B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.

C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数. D.两个函数的定义域不同,不能表示同一函数. 故选:C.

第 7 页,共 16 页

精选高中模拟试卷

【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

9. 【答案】C

【解析】解:设C(x,y,z),

∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,

∴,解得x=4,y=﹣3,z=1,

∴C(4,﹣3,1). 故选:C.

10.【答案】B

222

【解析】解:根据题意,M∩N={(x,y)|x+y=1,x∈R,y∈R}∩{(x,y)|x﹣y=0,x∈R,y∈R}═{(x,y)

|}

222

将x﹣y=0代入x+y=1, 2

得y+y﹣1=0,△=5>0,

所以方程组有两组解,

因此集合M∩N中元素的个数为2个, 故选B.

【点评】本题既是交集运算,又是函数图形求交点个数问题

11.【答案】D

2222【解析】∵PF1PF2,即PF1F2为直角三角形,∴PF1PF2F1F24c,1PF20,∴PF|PF1PF2|2a,则2PF1PF2PF12PF22(PF1PF2)24(c2a2),

(PF1PF2)2(PF1PF2)24PF1PF28c24a2.所以PF1F2内切圆半径 rPF1PF2F1F2312c2a2c,外接圆半径Rc.由题意,得2c2a2cc,整理,得

22c()2423,∴双曲线的离心率e31,故选D. a12.【答案】如图,该程序运行后输出的结果为( ) D

第 8 页,共 16 页

精选高中模拟试卷

【解析】解:因为A=1,s=1

判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4; 判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5; 判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;

此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5. 故答案为5.

【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.

二、填空题

13.【答案】 4或 .

【解析】解:设AB=2x,则AE=x,BC=∴AC=

×

22

由余弦定理可得x=9+3x+9﹣2×3×

∴x=1或或AB=2

,球O的直径为,球O的直径为.

=4,

=

,BC=

∴AB=2,BC=2故答案为:4或

14.【答案】1

第 9 页,共 16 页

精选高中模拟试卷

15.【答案】

【解析】解:AD取最小时即AD⊥BC时,根据题意建立如图的平面直角坐标系, 根据题意,设A(0,y),C(﹣2x,0),B(x,0)(其中x>0), 则

=(﹣2x,﹣y),

=(x,﹣y), ,

=

cos

=9,

=18,

∵△ABC的面积为∴∵

22

∴﹣2x+y=9,

∵AD⊥BC, ∴S=•由故答案为:

=得:x=

. ⇒xy=3

, ,

第 10 页,共 16 页

精选高中模拟试卷

【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识.

16.【答案】 240

【解析】解:由(2x+

6

),得

=

由6﹣3r=0,得r=2. ∴常数项等于

故答案为:240.

17.【答案】 (1,2) .

【解析】解:∵f(x)=logax(其中a为常数且a>0,a≠1)满足f(2)>f(3), ∴0<a<1,x>0,

若f(2x﹣1)<f(2﹣x), 则

解得:1<x<2, 故答案为:(1,2).

【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.

18.【答案】2,

23第 11 页,共 16 页

精选高中模拟试卷

【解析】

三、解答题

19.【答案】

【解析】解:(Ⅰ)设数列{an}的公比为q, 由an>0可得q>0,且a3﹣a2﹣2a1=0, 化简得q﹣q﹣2=0,

2

解得q=2或q=﹣1(舍),

2

∵a3=a1•q=4a1=8,∴a1=2,

∴数列{an}是以首项和公比均为2的等比数列,

n

∴an=2;

第 12 页,共 16 页

精选高中模拟试卷

(Ⅱ)由(I)知bn=log2an=

n

∴anbn=n•2,

=n,

123n1n

∴Sn=1×2+2×2+3×2+…+(n﹣1)×2﹣+n×2,

2Sn=1×22+2×23+…+(n﹣2)×2n﹣1+(n﹣1)×2n+n×2n+1,

123n1nn+1

两式相减,得﹣Sn=2+2+2+…+2﹣+2﹣n×2,

∴﹣Sn=

n+1

﹣n×2,

n+1

∴Sn=2+(n﹣1)2.

【点评】本题考查等比数列的通项公式,错位相减法求和等基础知识,考查推理论证能力、运算求解能力、数据处理能力,考查函数与方程思想、化归与转化思想,注意解题方法的积累,属于中档题.

20.【答案】(1)AUB2x10,CRAIBx2x3或7x10;(2)a1或2a【解析】

试题分析:(1)由题可知:9。 2集合B,观察图形可求,AUB2x10,观察数轴,可以求出CRAxx3或x7,则

x30,所以3x7,因此集合Ax3x7,画数轴表示出集合A,

7x0CRAIa2a1,CB可得:CB,Bx2x3或7x10;(2)由BU分类讨论,当B时,

a1a2a19解得:a1,当B时,若CB,则应满足a2,即a2,所以2a,因此满足

22a1109a29BUCB的实数a的取值范围是:a1或2a。

2x30得:

试题解析:(1):由3x7

7x0A={x|3x<7}

AB{x|2x10}, (CA)B{x|2=

a2a19当B时,a2,2a

22a110第 13 页,共 16 页

精选高中模拟试卷

即a-1或2a9 。 2

考点:1.函数的定义域;2.集合的运算;3.集合间的关系。 21.【答案】

【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立, 当m≠0时,若f(x)<0恒成立, 则

解得﹣4<m<0

综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ (2)要x∈[1,3],f(x)<﹣m+5恒成立, 即令﹣﹣﹣﹣

当 m>0时,g(x)是增函数, 所以g(x)max=g(3)=7m﹣6<0, 解得

.所以

恒成立.

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

当m=0时,﹣6<0恒成立. 当m<0时,g(x)是减函数. 所以g(x)max=g(1)=m﹣6<0, 解得m<6. 所以m<0. 综上所述,

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣

﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ 题的关键.

22.【答案】

【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问

【解析】解:(Ⅰ)事件“第一次或第二次取到3号球的概率”的对立事件为“二次取球都没有取到3号球”,

22C4C416∴所求概率为P122(6分)

C5C525第 14 页,共 16 页

精选高中模拟试卷

112C323C2C3C231(Ⅱ)0,1,2, P(0)2,P(1),,(9分) P(2)22C510C55C510故的分布列为:

 P 0 1 2 3 103 51 10 (10分)

∴E0331412 (12分) 10510523.【答案】

【解析】解:(1)∵EP与⊙O相切于点A,∴∠ACB=∠PAB=25°, 又BC是⊙O的直径,∴∠ABC=65°,

∵四边形ABCD内接于⊙O,∴∠ABC+∠D=180°, ∴∠D=115°.

证明:(2)∵∠DAE=25°,∴∠ACD=∠PAB,∠D=∠PBA, ∴△ADC∽△PBA,∴

2

又DA=BA,∴DA=DC•BP.

24.【答案】

【解析】(1)当n1时,a112a1,解得a11. 当n2时,Snn2an,

(3分) (1分)

Sn1(n1)2an1,

①-②得,an12an2an1即an2an11, 即an12(an11)(n2),又a112. 即an12n故an2n1(nN).

*所以an1是以2为首项,2为公比的等比数列.

(5分)

第 15 页,共 16 页

精选高中模拟试卷

第 16 页,共 16 页

因篇幅问题不能全部显示,请点此查看更多更全内容