Libpcap分析文档
杨 刘
2015年2月10日
1
目录
Libpcap分析文档 .................................................................................................................................. 1 1、Libpcap介绍 .................................................................................................................................... 3 2、Libpcap的安装................................................................................................................................. 4 3、Libpcap工作原理............................................................................................................................. 4 4、函数功能介绍 ................................................................................................................................... 8
4.1查找网络设备 ........................................................................................................................... 8 4.2打开网络设备 ......................................................................................................................... 13 4.3获取数据包 ............................................................................................................................. 80 总结 ...................................................................................................................................................... 83
2
1、Libpcap介绍
Libpcap是Packet Capture Library的英文缩写,即数据包捕获函数库。该库提供的C函数接口用于捕获及格过指定网络接口的数据包,该接口是被设为混杂模式。大多数网络监控软件都以它为基础,其提供的接口函数实现和封装了与数据包截获相关的过程。Libpcap提供了用户级别的网络数据包捕获接口,并充分考虑到引用程序的可移植性,可以在绝大多数类unix平台下工作。主要功能:
数据包捕获:捕获流经网卡的原始数据包 自定义数据包发送:构造任何格式的原始数据包 流量采集与统计:采集网络中的流量信息
规则过滤:提供自带规则过滤功能,按需要选择过滤规则 绝大多数的现代操作系统都提供了对底层网络数据包捕获的机制,在捕获机制之上可以建立网络监控(Network Monitoring)应用软件。网络监控也常简称为sniffer,其最初的目的在于对网络通信情况进行监控,以对网络的一些异常情况进行调试处理。但随着互连网的快速普及和网络攻击行为的频繁出现,保护网络的运行安全也成为监控软件的另一个重要目的。例如,网络监控在路由器,防火墙、入侵检查等方面使用也很广泛。本文分析了Libpcap在linux下的源代码实现,其中重点是linux的底层包捕获机制。
3
2、Libpcap的安装
Libpcap的下载地址: http://www.tcpdump.org/ 然后切换到下载的目录,解压压缩文件,配置,编译,安装。其命令如下:
cd **** tar zxvf **** ./configure Make Make install
配置中如果出现错误,检查是否安装了所有的依赖包bison、m4、GNU、flex以及libpcap-dev。在运行的时候,是需要root权限的。
3、Libpcap工作原理
作为捕获网络数据包的库,它是一个独立于系统的用户级的API接口,为底层网络检测提供了可移植的框架。从广义的角度上看,一个包捕获机制包含三个主要部分:最底层是针对特定操作系统的包捕获机制,最高层是针对用户程序的接口,第三部分是包过滤机制。不同的操作系统实现的底层包捕获机制可能是不一样的,但从形式上看大同小异。数据包常规的传输路径依次为网卡、设备驱动层、数据链路层、网络层、传输层、应用层。而包捕获机制是在数据链路层增加一个旁路处理,对发送和接收到的数据包做过滤、缓冲等相关处理,最后直接传递
4
到应用程序。值得注意的是,包捕获机制并不影响操作系统对数据包的网络栈处理。对用户程序而言,包捕获机制提供了一个统一的接口,使用户只需要简单的调用若干函数就能获得所期望的数据包。这样一来,针对特定操作系统的捕获机制对用户透明,使用户程序有比较好的可移植性。包过滤机制是对所捕获到的数据包根据用户的要求进行筛选,最终只把满足过滤条件的数据包传递给用户程序。如图1所示:
数据包抓取上层应用程序上层应用程序用户层调用Libpcap库标题调用Libpcap库内核缓冲区内核缓冲区过滤规则内核层网卡驱动网络接口网络接口层网络数据包
图1、包捕获机制
5
Libpcap源代码由20多个C文件构成,但在Linux系统下并不是所有文件都用到。可以通过查看命令make的输出了解实际所用的文件。本文所针对的Libpcap版本号为1.6.2
网络类型为常规以太网。Libpcap应用程序从形式上看很简单,其程序框架如图2所示:
6
查找网络设备发现可用的网卡,实现的函数为pcap_lookupdev(),如果当前有多个网卡,函数就会返回一个网络设备名的指针列表。打开网络设备利用上一步中的返回值,可以决定使用哪个网卡,通过函数pcap_open_live()打开网卡,返回用于捕捉网络数据包的描述字获取网络参数利用函数pcap_lookupnet(),可以获得指定网络设备的IP地址和子网掩码编译过滤规则Lipcap的主要功能就是提供数据包的过滤,函数pcap_compile()来实现设置过滤器在上一步的基础上利用pcap_setfilter()函数来设置抓取数据函数pcap_loop()和pcap_dispatch()来抓去数据包,也可以利用函数pcap_next()和pcap_next_ex()来完成同样的工作关闭网络设备pcap_close()函数关系设备,释放资源 图2、程序框架
在上面的流程中,通过查找网络设备,打开网络设备,获取网络参数,捕获数据包等操作简单的描述了一个抓包的流程。
7
4、函数功能介绍
4.1查找网络设备
Libpcap程序的第一步通常是在系统中找到合适的网络设备。网络接口在Linux网络体系中式一个很重要的概念,它是对具体网络硬件设备的一个抽象,在它的下面是具体的网卡驱动程序,而其上则是网络协议层。Linux中最常见的接口设备名eth0和lo。Lo称为回路设备,是一种逻辑意义上的设备,其主要目的是为了调试网络程序之间的通讯功能。Eth0对应实际的物理网卡,在真实网络环境下,数据包的发送和接收都要通过eth0。如果计算机有多个网卡,则还可以有更多的网络接口,如eth1,eth2等等。调用命令ifconfig可以列出当前所有活跃的接口及相关信息,注意对eth0的描述中技有物理网卡的MAC地址,也有网络协议的IP地址。查看文件/proc/net/dev也可以获得接口的信息。
Libpcap中检查网络设备中主要使用到的函数如下: char * pcap_lookupdev(char * errbuf)
//上面这个函数返回第一个合适的网络接口的字符串指针,如果出错,则errbuf存放出错信息字符串,errbuf至少应该是PCAP_ERRBUF_SIZE个字节长度的
char *
pcap_lookupdev(errbuf) register char *errbuf; {
8
pcap_if_t *alldevs;
/* for old BSD systems, including bsdi3 */ #ifndef IF_NAMESIZE
#define IF_NAMESIZE IFNAMSIZ #endif
static char device[IF_NAMESIZE + 1]; char *ret;
if (pcap_findalldevs(&alldevs, errbuf) == -1)
if (alldevs == NULL || (alldevs->flags & PCAP_IF_LOOPBACK)) {
device
there
means
can't
9
return (NULL);
/*
* There are no devices on the list, or the first
* on the list is a loopback device, which means
* are no non-loopback devices on the list. This
* we can't return any device. *
* XXX - why not return a loopback device? If we
it's
devices,
* capture on it, it won't be on the list, and if
* on the list, there aren't any non-loopback
* so why not just supply it as the default device? */
(void)strlcpy(errbuf, \"no suitable device found\ PCAP_ERRBUF_SIZE); ret = NULL;
} else {
/*
* Return the name of the first device on the list. */
(void)strlcpy(device, alldevs->name,
sizeof(device));
}
pcap_freealldevs(alldevs); return (ret); }
pcap_findalldevs_interfaces(alldevsp, errbuf) //获取常规的网络接口
ret = device;
10
Libpcap调用上面的pcap_lookupdev()函数获得可用网络接口的设备名。首先利用函数pcap_findalldevs_interfaces()查找网络设备接口,其部分源码如下:
/*
* Create a socket from which to fetch the list of interfaces,
* and from which to fetch IPv4 information. */
fd4 = socket(AF_INET, SOCK_DGRAM, 0); if (fd4 < 0) { }
//创建socket套接字,为后面的数据传输。
/*
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE, \"socket: %s\return (-1);
* How many entries will SIOCGLIFCONF return? */
ifn.lifn_family = AF_UNSPEC; ifn.lifn_flags = 0; ifn.lifn_count = 0;
if (ioctl(fd4, SIOCGLIFNUM, (char *)&ifn) < 0) {
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE, \"SIOCGLIFNUM: %s\
11
}
(void)close(fd6); (void)close(fd4); return (-1);
/*
* Get the entries. */
ifc.lifc_len = buf_size; ifc.lifc_buf = buf;
ifc.lifc_family = AF_UNSPEC; ifc.lifc_flags = 0; memset(buf, 0, buf_size);
if (ioctl(fd4, SIOCGLIFCONF, (char *)&ifc) < 0) { }
利用ioctl函数,获取所有的设备名。保存到*alldevsp指针的入口参数里面。在pcap_lookupdev函数的最后通过使用函数
(void)snprintf(errbuf, PCAP_ERRBUF_SIZE, \"SIOCGLIFCONF: %s\(void)close(fd6); (void)close(fd4); free(buf); return (-1);
12
strlcpy(device, alldevs->name, sizeof(device))将上面找到的设备名复制给device。最后返回给调用程序。
/* libpcap 自定义的接口信息链表 [pcap.h] */ struct pcap_if {
struct pcap_if *next; char *name; /* 接口设备名 */ char *description; /* 接口描述 */
/*接口的 IP 地址, 地址掩码, 广播地址,目的地址 */ struct pcap_addr addresses; bpf_u_int32 flags; /* 接口的参数 */ };
4.2打开网络设备
当设备找到后,下一步工作就是打开设备以准备捕获数据包。Libpcap的包捕获是建立在具体的操作系统所提供的捕获机制上,而Linux系统随着版本的不同,所支持的捕获机制也有所不同。
2.0 及以前的内核版本使用一个特殊的socket类型SOCK_PACKET,调用形式是socket(PF_INET, SOCK_PACKET, int protocol),但 Linux 内核开发者明确指出这种方式已过时。Linux 在 2.2及以后的版本中提
13
供了一种新的协议簇 PF_PACKET 来实现捕获机制。PF_PACKET 的调用形式为 socket(PF_PACKET, int socket_type, int protocol),其中socket类型可以是 SOCK_RAW和SOCK_DGRAM。SOCK_RAW 类型使得数据包从数据链路层取得后,不做任何修改直接传递给用户程序,而 SOCK_DRRAM 则要对数据包进行加工(cooked),把数据包的数据链路层头部去掉,而使用一个通用结构 sockaddr_ll 来保存链路信息。 使 用 2.0 版本内核捕获数据包存在多个问题:首先,SOCK_PACKET 方式使用结构 sockaddr_pkt来保存数据链路层信息,但该结构缺乏包类型信息;其次,如果参数 MSG_TRUNC 传递给读包函数 recvmsg()、recv()、recvfrom() 等,则函数返回的数据包长度是实际读到的包数据长度,而不是数据包真正的长度。Libpcap 的开发者在源代码中明确建议不使用 2.0 版本进行捕获。
相对2.0版本SOCK_PACKET方式,2.2版本的PF_PACKET方式则不存在上述两个问题。在实际应用中,用 户程序显然希望直接得到\"原始\"的数据包,因此使用 SOCK_RAW 类型最好。但在下面两种情况下,libpcap 不得不使用SOCK_DGRAM类型,从而也必须为数据包合成一个\"伪\"链路层头部(sockaddr_ll)。
打开网络设备的主函数是pcap_open_live,其任务就是通过给定的接口设备名,获得一个捕获句柄:pcap_t。Pcap_t结构体是大多数libpcap函数都要用到的参数,其中最重要的属性就是上面的socket方式的一种,位于pcap_int.h中,下面是pcap_t的结构:
/*
14
* We put all the stuff used in the read code path at the beginning,
* to try to keep it together in the same cache line or lines. */
struct pcap { /*
* Method to call to read packets on a live capture. */
read_op_t read_op; //回调函数,用户获取数据包。 /*
* Method to call to read to read packets from a savefile. */
int (*next_packet_op)(pcap_t *, struct pcap_pkthdr *, u_char **);
#ifdef WIN32 ADAPTER *adapter; LPPACKET Packet; int nonblock; #else
int fd; //文件描述符。实际就是socket int selectable_fd; #endif /* WIN32 */
15
/*
* Read buffer. */
int bufsize; u_char *buffer; u_char *bp; int cc;
int break_loop;
/* flag set to force break from
packet-reading loop */强制从读数据包循环中跳出的标志
void *priv;
int swapped; FILE *rfile; savefile */
int fddipad;
struct pcap *next; /* list of open pcaps that need stuff cleared on close */
/*
* File version number; meaningful only for a savefile, but we
16
/* private data for methods */
/* null if live capture, non-null if
* keep it here so that apps that (mistakenly) ask for the * version numbers will get the same zero values that they * always did. */
int version_major; int version_minor;
int snapshot; //用户期望捕获数据包的最大长度,自定义的 int linktype;
/* Network linktype */设备类型
int linktype_ext; /* Extended information stored in the linktype field of a file */
int tzoff;
/* timezone offset */时区位置 偏移 /* offset for proper alignment */边
int offset; 界对齐偏移量
int activated; started */
int oldstyle; pcap_open_live() */
/* true if the capture is really
/* if we're opening with
struct pcap_opt opt; /*
* Place holder for pcap_next(). */
17
u_char *pkt;
/* We're accepting only packets in this direction/these directions. */
pcap_direction_t direction; /*
* Placeholder for filter code if bpf not in kernel. */
//如果BPF过滤代码不能在内核中执行,则将其保存并在用户控件执行
struct bpf_program fcode;
//相关的函数指针,最终指向特定操作系统的处理函数。 char errbuf[PCAP_ERRBUF_SIZE + 1]; int dlt_count; u_int *dlt_list; int tstamp_type_count; u_int *tstamp_type_list; int tstamp_precision_count; u_int *tstamp_precision_list;
struct pcap_pkthdr pcap_header; /* This is needed for the pcap_next_ex() to work */
18
/*
* More methods. */
activate_op_t activate_op;
can_set_rfmon_op_t can_set_rfmon_op; inject_op_t inject_op; setfilter_op_t setfilter_op; setdirection_op_t setdirection_op; set_datalink_op_t set_datalink_op; getnonblock_op_t getnonblock_op; setnonblock_op_t setnonblock_op; stats_op_t stats_op; /*
* Routine to use as callback for pcap_next()/pcap_next_ex().
*/
pcap_handler oneshot_callback;
#ifdef WIN32 /*
* These are, at least currently, specific to the Win32 NPF * driver. */
19
setbuff_op_t setbuff_op; setmode_op_t setmode_op;
setmintocopy_op_t setmintocopy_op; getadapter_op_t getadapter_op; #endif
cleanup_op_t cleanup_op; };
函数pcap_open_live调用中,如果device为NULL或any,则对所有接口捕获,snaplen表示用户期望的捕获数据包最大长度,promisc表示设置接口为混杂模式,to_ms表示函数超时返回的时间。在pcap.c文件中找到pcap_open_live()函数,其源码如下:
pcap_t *
pcap_open_live(const char *source, int snaplen, int promisc, int to_ms, char *errbuf)
{
pcap_t *p; int status;
p = pcap_create(source, errbuf); if (p == NULL)
return (NULL);
status = pcap_set_snaplen(p, snaplen); if (status < 0)
goto fail;
20
status = pcap_set_promisc(p, promisc); if (status < 0)
goto fail;
status = pcap_set_timeout(p, to_ms); if (status < 0) /*
* Mark this as opened with pcap_open_live(), so that, for * example, we show the full list of DLT_ values, rather * than just the ones that are compatible with capturing * when not in monitor mode. That allows existing applications
* to work the way they used to work, but allows new applications
* that know about the new open API to, for example, find out the
* DLT_ values that they can select without changing whether
* the adapter is in monitor mode or not. */
p->oldstyle = 1;
status = pcap_activate(p); if (status < 0)
goto fail;
goto fail;
21
return (p); fail:
if (status == PCAP_ERROR) source,
p->errbuf);
snprintf(errbuf, PCAP_ERRBUF_SIZE, \"%s: %s\
else if (status == PCAP_ERROR_NO_SUCH_DEVICE || status == PCAP_ERROR_PERM_DENIED || status == PCAP_ERROR_PROMISC_PERM_DENIED) source,
else source,
pcap_statustostr(status));
snprintf(errbuf, PCAP_ERRBUF_SIZE, \"%s: %s\ pcap_statustostr(status), p->errbuf); snprintf(errbuf, PCAP_ERRBUF_SIZE, \"%s: %s (%s)\
pcap_close(p); return (NULL); }
从上面的源码可以看到,pcap_open_live函数首先调用
pcap_create函数,这个函数里面的内容待会儿在下面进行分析,然后就是调用pcap_set_snaplen(p, snaplen)函数设置最大捕获包的长度,对于以太网数据包,最大长度为1518bytes,默认的可以设置成65535可以捕获所有的数据包。然后就是调用pcap_set_promisc(p, promisc)
22
函数设置数据包的捕获模式,1为混杂模式(只有混杂模式才能接收所有经过该网卡设备的数据包)。pcap_set_timeout(p, to_ms)的作用是设置超时的时间,当应用程序在这个时间内没读到数据就返回。接着就是pcap_activate(p)函数了,这个也将在后面进行讲解。
在Libpcap源码为了支持多个操作系统,代码错综复杂。对于pcap_create函数,在很多地方都定义了该函数,下面是在source insight软件中的列表。
其源码如下: pcap_t *
pcap_create(const char *source, char *errbuf) {
size_t i;
23
-
int is_theirs; pcap_t *p;
/*
* A null source name is equivalent to the \"any\" device
* which might not be supported on this platform, but * this means that you'll get a \"not supported\" error * rather than, say, a crash when we try to dereference * the null pointer. */
if (source == NULL)
source = \"any\";
/*
* Try each of the non-local-network-interface capture * source types until we find one that works for this * device or run out of types. */
for (i = 0; capture_source_types[i].create_op != NULL; i++) {
is_theirs = 0;
p = capture_source_types[i].create_op(source, errbuf,
&is_theirs);
24
}
}
if (is_theirs) { }
/*
* The device name refers to a device of the * type in question; either it succeeded, * in which case p refers to a pcap_t to * later activate for the device, or it * failed, in which case p is null and we * should return that to report the failure * to create. */ return (p);
/*
* OK, try it as a regular network interface. */
return (pcap_create_interface(source, errbuf));
首先,当传入的设备名为空就这是该source = “any”,any 表示所有的设备都能够获取数据包。接着就是用一个for循环来尝试用每个non-local-network-interface捕捉源类型,直到我们发现一种适合该设备或耗尽类型。如果没有找到,则调用pcap_create_interface(source, errbuf))函数的返回结果作为返回
25
值。
下面为pcap_create_interface(source, errbuf)函数的源代码: #endif /* SO_ATTACH_FILTER */ pcap_t *
pcap_create_interface(const char *device, char *ebuf) {
handle = pcap_create_common(device, ebuf, sizeof (struct pcap_t *handle;
pcap_linux));
// pcap_create_common为初始化的函数,通过网卡设备的名字获得pcap_t*的句柄,然后再设定handle的回调函数。
handle->activate_op = pcap_activate_linux;
handle->can_set_rfmon_op = pcap_can_set_rfmon_linux;
defined(HAVE_LINUX_NET_TSTAMP_H)
&&
if (handle == NULL)
return NULL;
#if
defined(PACKET_TIMESTAMP)
/*
* We claim that we support: *
* software time stamps, with no details about their
26
precision;
* hardware time stamps, synced to the host time; * hardware time stamps, not synced to the host time. *
* XXX - we can't ask a device whether it supports * hardware time stamps, so we just claim all devices do. */
handle->tstamp_type_count = 3;
handle->tstamp_type_list = malloc(3 * sizeof(u_int)); if (handle->tstamp_type_list == NULL) { }
handle->tstamp_type_list[0] = PCAP_TSTAMP_HOST; handle->tstamp_type_list[1] = PCAP_TSTAMP_ADAPTER; handle->tstamp_type_list[2]
=
snprintf(ebuf, PCAP_ERRBUF_SIZE, \"malloc: %s\ pcap_strerror(errno)); free(handle); return NULL;
PCAP_TSTAMP_ADAPTER_UNSYNCED;
#endif
#if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS)
/*
* We claim that we support microsecond and nanosecond time
27
* stamps. *
* XXX - with adapter-supplied time stamps, can we choose * microsecond or nanosecond time stamps on arbitrary * adapters? */
handle->tstamp_precision_count = 2; handle->tstamp_precision_list
=
malloc(2
*
sizeof(u_int));
if (handle->tstamp_precision_list == NULL) { }
handle->tstamp_precision_list[0]
=
snprintf(ebuf, PCAP_ERRBUF_SIZE, \"malloc: %s\ pcap_strerror(errno));
if (handle->tstamp_type_list != NULL)
free(handle->tstamp_type_list);
free(handle); return NULL;
PCAP_TSTAMP_PRECISION_MICRO;
handle->tstamp_precision_list[1]
=
PCAP_TSTAMP_PRECISION_NANO;
#endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */
28
}
return handle;
为了能够支持不同的设备,pcap_create通过#ifdef进行区分,这样就将打开不同的设备集成在一个函数中,而在我们的应用中就是普通的网卡,所以它就是调用pcap_create_common函数,它在pcap.c中定义,感觉有点混乱,为什么不直接在pcap-linux.c中定义呢,个人观点,应该在pcap-linux中定义,显的直观些,害我跟踪的时候,还要到pcap.c中取找这个函数,因为libpcap还要兼容其它操作系统的原因吧,因为你把它放在pcap-linux.c,其它操作系统调用这个函数,就不方便了,从这一点考虑,libpcap的作者们的架构还是挺不错的。另外定义
2
个回调函数
pcap_activate_linux
和
pcap_can_set_rfmon_linux函数。Pcap_create函数的返回值为pcap_t*类型的网卡的句柄。既然讲到了pcap_create函数,就必须跟踪到pcap_create_common函数及另外的2个回调函数中去。下面接着看pcap_create_common函数的源码:
pcap_t *
pcap_create_common(const char *source, char *ebuf, size_t size)
{
pcap_t *p;
p = pcap_alloc_pcap_t(ebuf, size); if (p == NULL)
29
by
return (NULL);
p->opt.source = strdup(source); if (p->opt.source == NULL) { }
snprintf(ebuf, PCAP_ERRBUF_SIZE, \"malloc: %s\ pcap_strerror(errno)); free(p); return (NULL);
/*
* Default to \"can't set rfmon mode\"; if it's supported
* a platform, the create routine that called us can set * the op to its routine to check whether a particular * device supports it. */
p->can_set_rfmon_op = pcap_cant_set_rfmon;
initialize_ops(p);
/* put in some defaults*/
pcap_set_snaplen(p, MAXIMUM_SNAPLEN); /* max packet size */
30
p->opt.timeout = 0; /* no timeout specified */
/* use the platform's
p->opt.buffer_size = 0;
default */
p->opt.promisc = 0; p->opt.rfmon = 0; p->opt.immediate = 0;
p->opt.tstamp_type = -1; /* default to not setting time
stamp type */
}
首先调用pcap_alloc_pcap_t函数给p分配内存。然后调用strdup函数。它的作用是复制字符串。返回指向被复制的字符串的指针。需要加头文件#include 在p->can_set_rfmon_op = pcap_cant_set_rfmon这句代码中,默认不设置rfmon 模式。而initialize_ops(p)函数的作用就是设置初始化的一系列回调函数。其中initialize_ops(p)函数的源代码如下: static void initialize_ops(pcap_t *p) { on 31 p->opt.tstamp_precision = PCAP_TSTAMP_PRECISION_MICRO; return (p); /* * Set operation pointers for operations that only work * an activated pcap_t to point to a routine that returns * a \"this isn't activated\" error. */ p->read_op = (read_op_t)pcap_not_initialized; p->inject_op = (inject_op_t)pcap_not_initialized; p->setfilter_op = (setfilter_op_t)pcap_not_initialized; p->setdirection_op = (setdirection_op_t)pcap_not_initialized; p->set_datalink_op = (set_datalink_op_t)pcap_not_initialized; p->getnonblock_op = (getnonblock_op_t)pcap_not_initialized; p->setnonblock_op = (setnonblock_op_t)pcap_not_initialized; p->stats_op = (stats_op_t)pcap_not_initialized; #ifdef WIN32 p->setbuff_op = (setbuff_op_t)pcap_not_initialized; p->setmode_op = (setmode_op_t)pcap_not_initialized; p->setmintocopy_op = (setmintocopy_op_t)pcap_not_initialized; p->getadapter_op = pcap_no_adapter; #endif /* 32 * Default cleanup operation - implementations can override } pcap_create_common讲解完了,接着讲解pcap_create函数中的另外一个回调函数,pcap_activate_linux。通过搜索。发现在pcap_linux.c这个文件中。在整个pcap的架构中,把linux要用到的函数都集成到pcap_linux.c中,把多个操作系统共用的函数都放到了pcap.c 中,例如前面分析的 pcap_create_common、 /* * In most cases, the standard one-shot callback can * be used for pcap_next()/pcap_next_ex(). */ p->oneshot_callback = pcap_oneshot; * this, but should call pcap_cleanup_live_common() after * doing their own additional cleanup. */ p->cleanup_op = pcap_cleanup_live_common; pcap_create_interface函数。下面讲解pcap_activate_linux这个源码。从 pcap_activate_linux 的源码可以看到,通过 pcap_create_common对pcap_t * p设定初始值,其实就像c++的初始化函数一样,比如c++的构造函数,MFC的OninitDialog函数一样。初始化就是初始化,对于不同的系统,就要进行不同的设置了,在linux函数中pcap_activate_linux中可以看到又对pcap_create_common中 33 初始化的回调函数又重新进行了设置,看到这里我就佩服libpcap的作者了,把pcap_create_common函数放到了pcap.c文件中。 /* * Get a handle for a live capture from the given device. You can * pass NULL as device to get all packages (without link level * information of course). If you pass 1 as promisc the interface * will be set to promiscous mode (XXX: I think this usage should * be deprecated and functions be added to select that later allow * modification of that values -- Torsten). */ static int pcap_activate_linux(pcap_t *handle) { struct pcap_linux *handlep = handle->priv; const char *device; struct ifreq ifr; int int status = 0; ret; 34 /* * Make sure the name we were handed will fit into the device = handle->opt.source; //网卡的名字 ioctls we * might perform on the device; if not, return a \"No such device\" * indication, as the Linux kernel shouldn't support creating * a device whose name won't fit into those ioctls. * * \"Will fit\" means \"will fit, complete with a null terminator\ * so if the length, which does *not* include the null terminator, which * is greater than *or equal to* the size of the field into * we'll be copying it, that won't fit. */ if (strlen(device) >= sizeof(ifr.ifr_name)) { } 35 status = PCAP_ERROR_NO_SUCH_DEVICE; goto fail; not * to bind to a particular device and thus to look at all * devices. */ if (strcmp(device, \"any\") == 0) { if (handle->opt.promisc) { handle->opt.promisc = 0; /* Just a warning. */ snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"Promiscuous mode not supported on the \\\"any\\\" /* * The \"any\" device is a special device which causes us handle->inject_op = pcap_inject_linux; handle->setfilter_op = pcap_setfilter_linux; handle->setdirection_op = pcap_setdirection_linux; handle->set_datalink_op = pcap_set_datalink_linux; handle->getnonblock_op = pcap_getnonblock_fd; handle->setnonblock_op = pcap_setnonblock_fd; handle->cleanup_op = pcap_cleanup_linux; handle->read_op = pcap_read_linux; handle->stats_op = pcap_stats_linux; device\"); 36 } } status = PCAP_WARNING_PROMISC_NOTSUP; handlep->device = strdup(device); if (handlep->device == NULL) { snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"strdup: %s\ /* * If we're in promiscuous mode, then we probably want * to see when the interface drops packets too, so get an * initial count from /proc/net/dev */ if (handle->opt.promisc) handlep->proc_dropped = } /* copy timeout value */ handlep->timeout = handle->opt.timeout; pcap_strerror(errno) ); return PCAP_ERROR; linux_if_drops(handlep->device); 37 to need are /* * Current Linux kernels use the protocol family PF_PACKET * allow direct access to all packets on the network while * older kernels had a special socket type SOCK_PACKET to * implement this feature. * While this old implementation is kind of obsolete we * to be compatible with older kernels for a while so we * trying both methods with the newer method preferred. */ //现在的内核是采用的PF_PACKET。对于以前的内核采用 SOCK_PACKET ret = activate_new(handle); //activate_new函数的作用在没有定义PF_RING的情况下通过PF_PACKET接口建立socket,返回1表示成功,可以采用PF_PACKET建立socket,返回0表示失败,这时可以尝试采用SOCKET_PACKET接口建立socket,该函数也在pcap-linux.c中可以找到源码;根据status的返回值,确定3种不同的情况,返回1成功,表示采用的是PF_PACKET建立socket,而返回0的时候,又调用activate_old函数进行判断,如果activate_old函数返回1表示调用的是SOCK_PACKET建立socket,而activate_old返回0表示失败;第3种情况是status不等于上面的2个值,则表示失败。在下面将详细 38 分析activate_new函数。 if (ret < 0) { } if (ret == 1) { /* * Success. * Try to use memory-mapped access. */ switch (activate_mmap(handle, &status)) { /* * Fatal error with the new way; just fail. * ret has the error return; if it's PCAP_ERROR, * handle->errbuf has been set appropriately. */ status = ret; goto fail; case 1: /* * We succeeded. status has been * set to the status to return, * which might be 0, or might be * a PCAP_WARNING_ value. */ 39 return status; case 0: /* * Kernel doesn't support it - just continue * with non-memory-mapped access. */ break; } case -1: } /* * We failed to set up to use it, or the kernel * supports it, but we failed to enable it. * ret has been set to the error status to * return and, if it's PCAP_ERROR, handle->errbuf * contains the error message. */ status = ret; goto fail; else if (ret == 0) { /* Non-fatal error; try old way */ if ((ret = activate_old(handle)) != 1) { 40 } } /* * Both methods to open the packet socket failed. * Tidy up and report our failure (handle->errbuf * is expected to be set by the functions above). */ status = ret; goto fail; /* * We set up the socket, but not with memory-mapped access. */ if (handle->opt.buffer_size != 0) { //如果buffer_size不为0,pcap_set_buffer_size设置了内 核缓冲区的大小,而不是采用默认的内核缓冲区,因此首先通过setsockopt发送设置命令,然后调用malloc分配内存 /* * Set the socket buffer size to the specified value. */ if (setsockopt(handle->fd, SOL_SOCKET, SO_RCVBUF, &handle->opt.buffer_size, sizeof(handle->opt.buffer_size)) == -1) { snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, 41 } } \"SO_RCVBUF: %s\ status = PCAP_ERROR; goto fail; /* Allocate the buffer */ handle->buffer = malloc(handle->bufsize + handle->offset); if (!handle->buffer) { } snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"malloc: %s\ status = PCAP_ERROR; goto fail; /* * \"handle->fd\" is a socket, so \"select()\" and \"poll()\" * should work on it. */ handle->selectable_fd = handle->fd; return status; 42 fail: } pcap_activate_linux函数分析完了。但是其到底是怎么建立通讯的还不是很清楚,现在进入activate_new函数进行分析,其源码如下: /* ===== Functions to interface to the newer kernels ================== */ /* * Try to open a packet socket using the new kernel PF_PACKET interface. * Returns 1 on success, 0 on an error that means the new interface isn't * present (so the old SOCK_PACKET interface should be tried), and a * PCAP_ERROR_ value on an error that means that the old mechanism won't * work either (so it shouldn't be tried). */ static int activate_new(pcap_t *handle) 43 pcap_cleanup_linux(handle); return status; { #ifdef HAVE_PF_PACKET_SOCKETS struct pcap_linux *handlep = handle->priv; const char int int *device = handle->opt.source; is_any_device = (strcmp(device, \"any\") == 0); sock_fd = -1, arptype; #ifdef HAVE_PACKET_AUXDATA int val; #endif /* * Open a socket with protocol family packet. If the * \"any\" device was specified, we open a SOCK_DGRAM * socket for the cooked interface, otherwise we first * try a SOCK_RAW socket for the raw interface. */ sock_fd = is_any_device ? socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)) : socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL)); int err = 0; mr; struct packet_mreq // 建立socket。当网卡设备名为any的时候用SOCK_DGRAM,当不为any时用SOCK_RAM 来建立。至于后面的通信就是在这里开始的。基于该socket描述符。在下面肯定有bind函数。 44 if (sock_fd == -1) { if (errno == EINVAL || errno == EAFNOSUPPORT) { } /* * We don't support PF_PACKET/SOCK_whatever * sockets; try the old mechanism. */ return 0; snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"socket: %s\ pcap_strerror(errno) ); if (errno == EPERM || errno == EACCES) { /* * You don't have permission to open the * socket. */ return PCAP_ERROR_PERM_DENIED; } else { } 45 /* * Other error. */ return PCAP_ERROR; } /* It seems the kernel supports the new interface. */ handlep->sock_packet = 0; /* * Get the interface index of the loopback device. * If the attempt fails, don't fail, just set the * \"handlep->lo_ifindex\" to -1. * * XXX - can there be more than one device that loops * packets back, i.e. devices other than \"lo\"? If so, * we'd need to find them all, and have an array of * indices for them, and check all of them in * \"pcap_read_packet()\". */ handlep->lo_ifindex = iface_get_id(sock_fd, \"lo\ handle->errbuf); /* * Default value for offset to align link-layer payload * on a 4-byte boundary. */ handle->offset = 0; 46 /* * What kind of frames do we have to deal with? Fall back * to cooked mode if we have an unknown interface type * or a type we know doesn't work well in raw mode. */ if (!is_any_device) { /* Assume for now we don't need cooked mode. */ handlep->cooked = 0; if (handle->opt.rfmon) { /* * We were asked to turn on monitor mode. * Do so before we get the link-layer type, * because entering monitor mode could change * the link-layer type. */ err = enter_rfmon_mode(handle, sock_fd, device); if (err < 0) { } if (err == 0) { 47 /* Hard failure */ close(sock_fd); return err; } /* * Nothing worked for turning monitor mode * on. */ close(sock_fd); return PCAP_ERROR_RFMON_NOTSUP; } /* * Either monitor mode has been turned on for * the device, or we've been given a different * device to open for monitor mode. If we've * been given a different device, use it. */ if (handlep->mondevice != NULL) device = handlep->mondevice; arptype = iface_get_arptype(sock_fd, device, handle->errbuf); if (arptype < 0) { } map_arphrd_to_dlt(handle, arptype, device, 1); 48 close(sock_fd); return arptype; if (handle->linktype == -1 || handle->linktype == DLT_LINUX_SLL || handle->linktype == DLT_LINUX_IRDA || handle->linktype == DLT_LINUX_LAPD || handle->linktype == DLT_NETLINK || (handle->linktype == DLT_EN10MB && (strncmp(\"isdn\ strncmp(\"isdY\ /* * Unknown interface type (-1), or a * device we explicitly chose to run * in cooked mode (e.g., PPP devices), * or an ISDN device (whose link-layer * type we can only determine by using * APIs that may be different on different * kernels) - reopen in cooked mode. */ if (close(sock_fd) == -1) { } sock_fd = socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)); 49 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"close: %s\ return PCAP_ERROR; if (sock_fd == -1) { } handlep->cooked = 1; snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"socket: %s\if (errno == EPERM || errno == EACCES) { /* * You don't have permission to * open the socket. */ return PCAP_ERROR_PERM_DENIED; } else { } /* * Other error. */ return PCAP_ERROR; /* * Get rid of any link-layer type list * we allocated - this only supports cooked * capture. */ if (handle->dlt_list != NULL) { 50 } free(handle->dlt_list); handle->dlt_list = NULL; handle->dlt_count = 0; if (handle->linktype == -1) { } /* * Warn that we're falling back on * cooked mode; we may want to * update \"map_arphrd_to_dlt()\" * to handle the new type. */ snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"arptype %d not \" \"supported by libpcap - \" \"falling back to cooked \" \"socket\arptype); /* * IrDA capture is not a real \"cooked\" capture, * it's IrLAP frames, not IP packets. The * same applies to LAPD capture. 51 } */ if (handle->linktype != DLT_LINUX_IRDA && handle->linktype != DLT_LINUX_LAPD && handle->linktype != DLT_NETLINK) handle->linktype = DLT_LINUX_SLL; handlep->ifindex = iface_get_id(sock_fd, device, handle->errbuf); if (handlep->ifindex == -1) { } //在这里出现了iface_bind函数。在该函数里面bind(fd, close(sock_fd); return PCAP_ERROR; (struct sockaddr *) &sll, sizeof(sll)) == -1进行绑定。 if ((err = iface_bind(sock_fd, handlep->ifindex, handle->errbuf)) != 1) { } close(sock_fd); if (err < 0) return err; else return 0; /* try old mechanism */ } else { 52 /* * The \"any\" device. */ if (handle->opt.rfmon) { } /* * It doesn't support monitor mode. */ close(sock_fd); return PCAP_ERROR_RFMON_NOTSUP; /* * It uses cooked mode. */ handlep->cooked = 1; handle->linktype = DLT_LINUX_SLL; /* * We're not bound to a device. * For now, we're using this as an indication * that we can't transmit; stop doing that only * if we figure out how to transmit in cooked * mode. */ 53 } handlep->ifindex = -1; /* * Select promiscuous mode on if \"promisc\" is set. * * Do not turn allmulti mode on if we don't select * promiscuous mode - on some devices (e.g., Orinoco * wireless interfaces), allmulti mode isn't supported * and the driver implements it by turning promiscuous * mode on, and that screws up the operation of the * card as a normal networking interface, and on no * other platform I know of does starting a non- * promiscuous capture affect which multicast packets * are received by the interface. */ /* * Hmm, how can we set promiscuous mode on all interfaces? * I am not sure if that is possible at all. For now, we * silently ignore attempts to turn promiscuous mode on * for the \"any\" device (so you don't have to explicitly * disable it in programs such as tcpdump). */ 54 if (!is_any_device && handle->opt.promisc) { memset(&mr, 0, sizeof(mr)); mr.mr_ifindex = handlep->ifindex; mr.mr_type = PACKET_MR_PROMISC; if (setsockopt(sock_fd, SOL_PACKET, PACKET_ADD_MEMBERSHIP, /* Enable auxillary data if supported and reserve room for * reconstructing VLAN headers. */ } &mr, sizeof(mr)) == -1) { } snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"setsockopt: %s\ close(sock_fd); return PCAP_ERROR; #ifdef HAVE_PACKET_AUXDATA &val, val = 1; if (setsockopt(sock_fd, SOL_PACKET, PACKET_AUXDATA, sizeof(val)) == -1 && errno != ENOPROTOOPT) { snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"setsockopt: %s\ 55 } close(sock_fd); return PCAP_ERROR; handle->offset += VLAN_TAG_LEN; #endif /* HAVE_PACKET_AUXDATA */ /* * This is a 2.2[.x] or later kernel (we know that * because we're not using a SOCK_PACKET socket - * PF_PACKET is supported only in 2.2 and later * kernels). * * We can safely pass \"recvfrom()\" a byte count * based on the snapshot length. * * If we're in cooked mode, make the snapshot length * large enough to hold a \"cooked mode\" header plus * 1 byte of packet data (so we don't pass a byte * count of 0 to \"recvfrom()\"). */ if (handlep->cooked) { } 56 if (handle->snapshot < SLL_HDR_LEN + 1) handle->snapshot = SLL_HDR_LEN + 1; handle->bufsize = handle->snapshot; /* * Set the offset at which to insert VLAN tags. */ switch (handle->linktype) { case DLT_EN10MB: handlep->vlan_offset = 2 * ETH_ALEN; break; case DLT_LINUX_SLL: handlep->vlan_offset = 14; break; default: handlep->vlan_offset = -1; /* unknown */ break; } #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) if (handle->opt.tstamp_precision PCAP_TSTAMP_PRECISION_NANO) { int nsec_tstamps = 1; 57 == if (setsockopt(sock_fd, SOL_SOCKET, SO_TIMESTAMPNS, &nsec_tstamps, sizeof(nsec_tstamps)) < 0) { snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"setsockopt: unable to set SO_TIMESTAMPNS\"); } } close(sock_fd); return PCAP_ERROR; #endif /* defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) */ /* * We've succeeded. Save the socket FD in the pcap structure. return 1; */ handle->fd = sock_fd; #else /* HAVE_PF_PACKET_SOCKETS */ \" strlcpy(ebuf, \"New packet capturing interface not supported by build \"environment\ 58 return 0; #endif /* HAVE_PF_PACKET_SOCKETS */ } 在activate_new函数中,主要涉及到socket的创建与bind。下面将pcap_activate_linux函数中定义的重要回调函数罗列出来: handle->inject_op = pcap_inject_linux; handle->setfilter_op = pcap_setfilter_linux; handle->setdirection_op = pcap_setdirection_linux; handle->set_datalink_op = pcap_set_datalink_linux; handle->getnonblock_op = pcap_getnonblock_fd; handle->setnonblock_op = pcap_setnonblock_fd; handle->cleanup_op = pcap_cleanup_linux; handle->read_op = pcap_read_linux; handle->stats_op = pcap_stats_linux; 其中一个重要的回调函数就是pcap_read_linux。进入其源码,如下: /* * Read at most max_packets from the capture stream and call the callback * for each of them. Returns the number of packets handled or -1 if an * error occured. */ static int 59 pcap_read_linux(pcap_t *handle, int max_packets, pcap_handler callback, u_char *user) { read, } 其中就只有一句,return pcap_read_packet(handle, callback, user)。调用pcap_read_packet读取数据包。在该函数中,初步断定是在后面的pcap_next、pcap_dispatch、pcap_loop这几个函数读包时调用的。下面开始分析pcap_read_packet函数,源码如下: /* * Read a packet from the socket calling the handler provided by * the user. Returns the number of packets received or -1 if an * error occured. */ static int pcap_read_packet(pcap_t *handle, pcap_handler callback, 60 /* * Currently, on Linux only one packet is delivered per * so we don't loop. */ return pcap_read_packet(handle, callback, user); u_char *userdata) { struct pcap_linux *handlep = handle->priv; u_char int *bp; //数据包缓冲区指针 offset; //bp与捕获句柄pcap_t中handle->buffer之间的偏移量,其目的是为再加工模式捕获情况下,为合成的伪数据链路层头部流出空间 //PACKET_SOCKET方式下,recvfrom()返回sockeaddr_ll类型,而在SOCK_PACKET方式下返回sockaddr类型 #ifdef HAVE_PF_PACKET_SOCKETS struct sockaddr_ll from; struct sll_header *hdrp; #else struct sockaddr from; #endif #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) struct iovec struct msghdr struct cmsghdr union { iov; msg; *cmsg; struct cmsghdr cmsg; char buf[CMSG_SPACE(sizeof(struct 61 tpacket_auxdata))]; } cmsg_buf; /* defined(HAVE_PACKET_AUXDATA) && #else defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ socklen_t /* fromlen; defined(HAVE_PACKET_AUXDATA) && #endif defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ int packet_len, caplen; pcap_header; struct pcap_pkthdr //libpcap自定义的头部,pcap_pkthdr结构体如下: struct pcap_pkthdr { }; 该结构体主要记录时间戳、抓取的数据包以及数据包长度。通常后两者的长度是一样的。 #ifdef HAVE_PF_PACKET_SOCKETS /* * If this is a cooked device, leave extra room for a * fake packet header. */ //如果是加工模式,则在合成的链路层头部留出空间 62 struct timeval ts; /* time stamp */ bpf_u_int32 caplen; /* length of portion present */ bpf_u_int32 len; /* length this packet (off wire) */ if (handlep->cooked) offset = SLL_HDR_LEN; //其他两种方式下,链路层头部不做修改返回,不需要留出空间 else offset = 0; #else /* * This system doesn't have PF_PACKET sockets, so it doesn't * support cooked devices. */ offset = 0; #endif /* * Receive a single packet from the kernel. * We ignore EINTR, as that might just be due to a signal * being delivered - if the signal should interrupt the * loop, the signal handler should call pcap_breakloop() * to set handle->break_loop (we ignore it on other * platforms as well). * We also ignore ENETDOWN, so that we can continue to * capture traffic if the interface goes down and comes 63 * back up again; comments in the kernel indicate that * we'll just block waiting for packets if we try to * receive from a socket that delivered ENETDOWN, and, * if we're using a memory-mapped buffer, we won't even * get notified of \"network down\" events. */ bp = handle->buffer + handle->offset; #if defined(HAVE_PACKET_AUXDATA) defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) msg.msg_name = &from; msg.msg_namelen = sizeof(from); msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = &cmsg_buf; msg.msg_controllen = sizeof(cmsg_buf); msg.msg_flags = 0; iov.iov_len = handle->bufsize - offset; iov.iov_base = bp + offset; #endif /* defined(HAVE_PACKET_AUXDATA) defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ do { 64 && && that /* * Has \"pcap_breakloop()\" been called? */ if (handle->break_loop) { /* * Yes - clear the flag that indicates that it has, * and return PCAP_ERROR_BREAK as an indication } * we were told to break out of the loop. */ handle->break_loop = 0; return PCAP_ERROR_BREAK; #if defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) packet_len = recvmsg(handle->fd, &msg, MSG_TRUNC); //在这里以及后面的recvfrom函数,说明了定义不同的类型,其接受的数据的方式是不一样的。 #else /* defined(HAVE_PACKET_AUXDATA) && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ fromlen = sizeof(from); //从内核中接收一个数据包,注意函数入参中对bp的位置的修正 65 packet_len = recvfrom( handle->fd, bp + offset, handle->bufsize - offset, MSG_TRUNC, (struct sockaddr *) &from, &fromlen); /* defined(HAVE_PACKET_AUXDATA) && #endif defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ } while (packet_len == -1 && errno == EINTR); /* Check if an error occured */ if (packet_len == -1) { switch (errno) { case EAGAIN: return 0; /* no packet there */ case ENETDOWN: /* * The device on which we're capturing went away. * * XXX - we should really return * PCAP_ERROR_IFACE_NOT_UP, but pcap_dispatch() * etc. aren't defined to return that. */ 66 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"The interface went down\"); return PCAP_ERROR; } default: } snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"recvfrom: %s\ return PCAP_ERROR; #ifdef HAVE_PF_PACKET_SOCKETS // and * bind() where the kernel may queue packets from any * interface. If we're bound to a particular if (!handlep->sock_packet) { /* * Unfortunately, there is a window between socket() interface, * discard packets not from that interface. * * (If socket filters are supported, we could do the * same thing we do when changing the filter; however, 67 * that won't handle packet sockets without socket * filter support, and it's a bit more complicated. * It would save some instructions per packet, however.) /* * Do checks based on packet direction. * We can only do this if we're using PF_PACKET; the * address returned for SOCK_PACKET is a */ if (handlep->ifindex != -1 && from.sll_ifindex != handlep->ifindex) return 0; \"sockaddr_pkt\" } * which lacks the relevant packet type information. */ if (!linux_check_direction(handle, &from)) return 0; #endif #ifdef HAVE_PF_PACKET_SOCKETS /* * If this is a cooked device, fill in the fake packet 68 header. */ //如果是加工模式,则合成伪链路层头部 if (handlep->cooked) { /* * Add the length of the fake header to the length * of packet data we read. */ //首先修正捕获包数据的长度,加上链路层头部的长度 hdrp = (struct sll_header *)bp; hdrp->sll_pkttype = packet_len += SLL_HDR_LEN; map_packet_type_to_sll_type(from.sll_pkttype); #if } hdrp->sll_hatype = htons(from.sll_hatype); hdrp->sll_halen = htons(from.sll_halen); memcpy(hdrp->sll_addr, from.sll_addr, (from.sll_halen > SLL_ADDRLEN) ? SLL_ADDRLEN : from.sll_halen); hdrp->sll_protocol = from.sll_protocol; defined(HAVE_PACKET_AUXDATA) 69 && defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) if (handlep->vlan_offset != -1) { for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct struct tpacket_auxdata *aux; unsigned int len; struct vlan_tag *tag; tpacket_auxdata)) || aux = (struct tpacket_auxdata *)CMSG_DATA(cmsg); cmsg->cmsg_level != SOL_PACKET || cmsg->cmsg_type != PACKET_AUXDATA) continue; #if defined(TP_STATUS_VLAN_VALID) if ((aux->tp_vlan_tci == 0) && !(aux->tp_status & TP_STATUS_VLAN_VALID)) #else if (aux->tp_vlan_tci == 0) /* this is ambigious but without the TP_STATUS_VLAN_VALID flag, there is nothing that we can do */ #endif 70 continue; len = packet_len > iov.iov_len ? iov.iov_len : packet_len; bp -= VLAN_TAG_LEN; memmove(bp, bp + VLAN_TAG_LEN, if (len < (unsigned int) handlep->vlan_offset) break; handlep->vlan_offset); tag = (struct vlan_tag *)(bp + handlep->vlan_offset); } /* defined(HAVE_PACKET_AUXDATA) && } packet_len += VLAN_TAG_LEN; tag->vlan_tpid = htons(ETH_P_8021Q); tag->vlan_tci = htons(aux->tp_vlan_tci); #endif defined(HAVE_LINUX_TPACKET_AUXDATA_TP_VLAN_TCI) */ #endif /* HAVE_PF_PACKET_SOCKETS */ /* 71 real does code * XXX: According to the kernel source we should get the * packet len if calling recvfrom with MSG_TRUNC set. It * not seem to work here :(, but it is supported by this * anyway. * To be honest the code RELIES on that feature so this is really out * that the following is happening: * * The packet comes from a random interface and the * broken with 2.2.x kernels. * I spend a day to figure out what's going on and I found packet_rcv * hook is called with a clone of the packet. That code inserts run always * the packet into the receive queue of the packet socket. * If a filter is attached to that socket that filter is * first - and there lies the problem. The default filter * cuts the packet at the snaplen: 72 call with This the * * # tcpdump -d * (000) ret #68 * * So the packet filter cuts down the packet. The recvfrom * says \"hey, it's only 68 bytes, it fits into the buffer\" * the result that we don't get the real packet length. * is valid at least until kernel 2.2.17pre6. * * We currently handle this by making a copy of the filter * program, fixing all \"ret\" instructions with non-zero * operands to have an operand of MAXIMUM_SNAPLEN so that * filter doesn't truncate the packet, and supplying that modified * filter to the kernel. */ //修正捕获的数据包的成都,根据前面的讨论,SOCK_PACKET方式下长度可能是不准确的 caplen = packet_len; if (caplen > handle->snapshot) 73 caplen = handle->snapshot; /* Run the packet filter if not using kernel filter */ //如果没有使用内核级的包过滤,则在用户空间进行过滤 if (handlep->filter_in_userland && handle->fcode.bf_insns) { if (bpf_filter(handle->fcode.bf_insns, bp, packet_len, caplen) == 0) { /* rejected by filter */ //没有通过过滤,数据包被丢弃 /* Fill in our own header data */ //填充libpcap自定义数据包头部数据:捕获时间,捕获的成都,真实的长度 /* get timestamp for this packet */ } } return 0; #if defined(SIOCGSTAMPNS) && defined(SO_TIMESTAMPNS) if (handle->opt.tstamp_precision == PCAP_TSTAMP_PRECISION_NANO) { if (ioctl(handle->fd, SIOCGSTAMPNS, &pcap_header.ts) == -1) { 74 snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"SIOCGSTAMPNS: %s\ pcap_strerror(errno)); } return PCAP_ERROR; } else #endif -1) { } snprintf(handle->errbuf, PCAP_ERRBUF_SIZE, \"SIOCGSTAMP: %s\ { if (ioctl(handle->fd, SIOCGSTAMP, &pcap_header.ts) == return PCAP_ERROR; } /* * Count the packet. * * Arguably, we should count them before we check the pcap_header.caplen pcap_header.len = caplen; = packet_len; filter, 75 * as on many other platforms \"ps_recv\" counts packets * handed to the filter rather than packets that passed * the filter, but if filtering is done in the kernel, we * can't get a count of packets that passed the filter, * and that would mean the meaning of \"ps_recv\" wouldn't * be the same on all Linux systems. * * XXX - it's not the same on all systems in any case; * ideally, we should have a \"get the statistics\" call * that supplies more counts and indicates which of them * it supplies, so that we supply a count of packets * handed to the filter only on platforms where that * information is available. * * We count them here even if we can get the packet count * from the kernel, as we can only determine at run time * whether we'll be able to get it from the kernel (if * HAVE_TPACKET_STATS isn't defined, we can't get it from * the kernel, but if it is defined, the library might * have been built with a 2.4 or later kernel, but we * might be running on a 2.2[.x] kernel without Alexey * Kuznetzov's turbopacket patches, and thus the kernel * might not be able to supply those statistics). We * could, I guess, try, when opening the socket, to get 76 that * the statistics, and if we can not increment the count * here, but it's not clear that always incrementing * the count is more expensive than always testing a flag * in memory. * * We keep the count in \"handlep->packets_read\ * for \"ps_recv\" if we can't get the statistics from the kernel. the * statistics from the kernel resets the kernel * We do that because, if we *can* get the statistics from * the kernel, we use \"handlep->stat.ps_recv\" and * \"handlep->stat.ps_drop\" as running counts, as reading statistics, here, where * we can get kernel statistics - once here, and once in * pcap_stats_linux(). */ //累加捕获数据包数目,注意到在不同内核和捕获方式情况下数目可能不准确 77 * and if we directly increment \"handlep->stat.ps_recv\" * that means it will count packets *twice* on systems handlep->packets_read++; /* Call the user supplied callback function */ //调用用户定义的回调函数 } callback(userdata, &pcap_header, bp); return 1; 一直将怎个源码看一下,发现其中最主要的还是对数据包的接收,以及对其中的数据的收集整理,计数等操作。 在前面的几十页中,pcap_open_live还没有讲解完。就分析了其中的调用的一个pcap_create函数。这也体现了Libpcap的强大之处。下面将分析 pcap_open_live中的另一个函数pcap_activate(p)。其源码如下: int pcap_activate(pcap_t *p) { int status; /* * Catch attempts to re-activate an already-activated * pcap_t; this should, for example, catch code that * calls pcap_open_live() followed by pcap_activate(), 78 * as some code that showed up in a Stack Exchange * question did. */ if (pcap_check_activated(p)) return (PCAP_ERROR_ACTIVATED); status = p->activate_op(p); //activate_op函数,通过搜索其原型为函数指针。它的初始化赋值在 pcap-linux.c 下 410 行。handle->activate_op = pcap_create 中定义的 pcap_activate_linux;明白了在 pcap_activate_linux函数中赋值的回调函数activate_op终于在这里调用了。在pcap_create中只是赋值定义了该回调函数,而调用就是在这里。 if (status >= 0) p->activated = 1; else { if (p->errbuf[0] == '\\0') { /* * No error message supplied by the activate routine; * for the benefit of programs that don't specially * handle errors other than PCAP_ERROR, return the * error message corresponding to the status. */ snprintf(p->errbuf, PCAP_ERRBUF_SIZE, \"%s\ 79 } } pcap_statustostr(status)); } /* * Undo any operation pointer setting, etc. done by * the activate operation. */ initialize_ops(p); return (status); Pcap_open_live函数到现在终于分析完了。其实就pcap_create和pcap_activate两个函数。在pcap_create中主要是socket的建立和绑定。而在pcap_activate中定义的是接收消息回调函数的定义。接下来对pcap_loop函数的分析,其中肯定必定会调用该回调函数pcap_read_linux。在该回调函数中pcap_read_packet读取数据包。 4.3获取数据包 通过前面的分析,下面将讲解如何获取数据包,以及用户回调函数的处理。那就是pcap_loop函数。其源码如下: 80 int pcap_loop(pcap_t *p, int cnt, pcap_handler callback, u_char *user) { for (;;) { //读取本地文件。 register int n; if (p->rfile != NULL) { /* * 0 means EOF, so don't loop if we get 0. */ n = pcap_offline_read(p, cnt, callback, user); } else { } if (n <= 0) return (n); 81 /* * XXX keep reading until we get something * (or an error occurs) */ do { n = p->read_op(p, cnt, callback, user); } while (n == 0); } } if (!PACKET_COUNT_IS_UNLIMITED(cnt)) { } cnt -= n; if (cnt <= 0) return (0); 首先通过判断rfile是否为空,为空,则进行后面的数据包的获取。不为空就处理本地文件的读取。p->read_op(p, cnt, callback, user)回调函数。搜索整个工程,发现其位于pcap-linux.c函数的1265行。在这行定义的回调函数,终于在这里进行了调用。该回调函数的分析在上面已经进行分析了,主要是获取数据包。也都详细的讲解了。在最后又一个callback(userdata, &pcap_header, bp);函数,是调用用户自定义的回调函数。最后通过处理用户传送的捕获数据长度的参数,当cnt为有限的时候就行减操作,知道小于等于0时,其代码如下: if (!PACKET_COUNT_IS_UNLIMITED(cnt)) { } cnt -= n; if (cnt <= 0) return (0); 82 因篇幅问题不能全部显示,请点此查看更多更全内容