�= xˆi is a gradient field and f = Clearly F Then �
�
�
20.3 4b.
x 2
2
�. is a scalar potential for F
�· dR �= f(1, 0)−f(−1, 0)=0F
C
7.20.4 2a.
ˆ, with t from 0 to 1. Then �= atˆLet P =(a, b, c) and R i + btˆj+ ctk
ˆ,�=(abct2 +abt+act+a)ˆF i+(abct2 +abt+bct+b)ˆj+(abct2 +act+bct+c)kso
�
1
0
�
�·dR dt = F
dt
�
1
(3abct2 + 2abt + 2act + 2bct + a + b + c)dt =
0
= abc + ab + ac + bc + a + b + c
Now if we put x, y, z instead of a, b, c, we obtain the scalar potential f(x, y, z)= xyz + xy + xz + yz + x + y + z. It is easy to verify that
�. f is indeed a scalar potential for F8.� 20.5 1.
Let f be the scalar potential we want to find. Then �
f(x, y, z) =(ye xy + ze xz)dx + a(y, z)=
= exy + e xz + a(y, z).
Hence
xe xy + 2 = fy = xe xy +
Hence
a(y, z)=2y + b(z),
f(x, y, z)= exy + e xz + 2y + b(z).
so
b(z)= c
∂a(y, z)
,∂y
so
∂a(y, z)
=2. ∂y
xe xz = fz = xe xz + b�(z),
We can take b(z) =0, andobtain a scalar potential
f(x, y, z)= exy +e xz + 2y.
The given curve C goes from P(0, 0, 1)to Q(1, 1, 0). Hence
�
�· dR �= f(Q)−f(P)= e + 1 F
C
3
因篇幅问题不能全部显示,请点此查看更多更全内容