您的当前位置:首页正文

嵌入式系统设计课设报告

2021-07-30 来源:客趣旅游网


福州大学

《嵌入式系统设计课设》

报告书

题 目: 基于28027的虚拟系统

姓 名:

学 号:

学 院: 电气工程与自动化学院

专 业: 电气工程与自动化 年 级:

起讫日期:

指导教师:

32

目 录

No table of contents entries found.

32

1、课程设计目的

《嵌入式系统设计课设》是与《嵌入式系统设计》课程相配套的实践教学环节。《嵌入式系统设计》是一门实践性很强的专业基础课,通过课程设计,达到进一步理解嵌入式芯片的硬件、软件和综合应用方面的知识,培养实践能力和综合应用能力,开拓学习积极性、主动性,学会灵活运用已经学过的知识,并能不断接受新的知识。培养大胆发明创造的设计理念,为今后就业打下良好的基础。

通过课程设计,掌握以下知识和技能:

1. 嵌入式应用系统的总体方案的设计; 2. 嵌入式应用系统的硬件设计; 3. 嵌入式应用系统的软件程序设计; 4. 嵌入式开发系统的应用和调试能力

2、课程设计题目和实现目标 课程设计题目:基于28027的虚拟系统

任务要求:

A、 利用28027的片上温度传感器,检测当前温度; B、 通过PWM过零中断作为温度检测A/D的触发,在PWM中断时完成温度采样和下一周期PWM占空比的修正;PWM频率为1K;

C、 利用按键作为温度给定;温度给定变化从10度到40度。 D、 当检测温度超过给定时,PWM占空比增减小(减小幅度自己设定);当检测温度小于给定时,PWM占空比增大(增大幅度自己设定);

E、 把PWM输出接到捕获口,利用捕获口测量当前PWM的占空比;

F、 把E测量的PWM占空比通过串口通信发送给上位机;

3、设计方案-----介绍系统实现方案和系统原理图 ①系统实现方案:

任务A:利用ADC模块通道A5获取当前环境温度。

任务B:PWM过零触发ADC模块,在PWM中断服务函数中,将当前环境温度和按键设定温度进行比较,并按照任务D的要求修订PWM占空

32

比。

PWM频率为1K HZ:

根据关系式:TBCLK=SYSCLKOUT/(HSPCLKDIV*CLKDIV) 取SYSCLKOUT=60M HZ,HSPCLKDIV=6,CLKDIV=1,求得

TBCLK=10M HZ。将period设为10K,便得到1K HZ 的PWM波。 任务C:用KEY模块的中断实现温度给定。

任务D:在PWM的周期结束产生的中断中,通过改变比较点CMPA的位置来改变PWM占空比的大小。

任务E:利用CAP模块设置3个捕获点捕获PWM的上升沿和下降沿,计算得到PWM波的占空比。

任务F:利用SCI模块实现串口通信将温度和占空比上传到上位机。 此外,各模块的配置都与GPIO模块有关。

②系统原理图:28027 C2000 Piccolo Launchpad原理图

32

32

4、程序流程--------各个模块的流程图

32

5、程序代码

①/*app.c*/

// the includes

#include \"Application/app.h\" //

**************************************************************************

// the defines

//

**************************************************************************

// the globals

//

**************************************************************************

// the functions

void delay(uint32_t time) {

while(time--); }

//延时函数 // end of file

②/*isr.c*/

// the includes

#include \"Application/isr.h\"

32

//

**************************************************************************

// the defines

//

**************************************************************************

// the globals

//

**************************************************************************

// the functions

interrupt void LED_PWM_isr(void) //PWM的中断服务函数 {

if(MY_ADC{ mycmp-=100*(SET_TEMP-MY_ADC); //PWM占空比增大 } else { mycmp+=100*(MY_ADC-SET_TEMP); //环境检测温度大于设定温度

// PWM占空比减小 }

PWM_setCmpA(myPwm1,mycmp); //设定CmpA值

PWM_clearIntFlag(myPwm1); //清零PWM中断标志位

PIE_clearInt(myPie,PIE_GroupNumber_3); //清零PIE中断标志位 mycmp=5000; //将比较点初值设为5000

}

interrupt void MY_ADC_isr(void) //ADC中断服务函数

{ MY_ADC=ADC_readResult(myAdc,ADC_ResultNumber_0); //获取ADC转换的数字量

32

MY_ADC= ADC_getTemperatureC(myAdc, MY_ADC); //将数字量转换为温度值

ADC_clearIntFlag(myAdc, ADC_IntNumber_1); //清除中断标志位

PIE_clearInt(myPie,PIE_GroupNumber_10); }

interrupt void KEY_xint1_isr(void) //按键中断服务函数 {

SET_TEMP++; if(SET_TEMP>40) { SET_TEMP=10; }

PIE_clearInt(myPie,PIE_GroupNumber_1); }

interrupt void MY_CAP_isr(void) //CAP中断服务函数 {

uint32_t CapEvent1Count=0,CapEvent2Count=0,CapEvent3Count=0; float fPwmDuty=0.0;

CapEvent1Count = CAP_getCap1(myCap); CapEvent2Count = CAP_getCap2(myCap); CapEvent3Count = CAP_getCap3(myCap);

fPwmDuty = (float)(CapEvent2Count - CapEvent1Count) / (CapEvent3Count - CapEvent1Count); //计算PWM占空比

fPwmDuty=fPwmDuty*100; NOW_PWM=(int)fPwmDuty;

CAP_clearInt(myCap, CAP_Int_Type_CEVT3); CAP_clearInt(myCap, CAP_Int_Type_Global);

// Acknowledge this interrupt to receive more interrupts from group 4 PIE_clearInt(myPie, PIE_GroupNumber_4); }

//redefined in Isr.h

// end of file

32

①/*F2802x_Device.h*/

#include \"F2802x_Component/include/adc.h\" #include \"F2802x_Component/include/clk.h\" #include \"F2802x_Component/include/flash.h\" #include \"F2802x_Component/include/gpio.h\" #include \"F2802x_Component/include/pie.h\" #include \"F2802x_Component/include/pll.h\" #include \"F2802x_Component/include/timer.h\" #include \"F2802x_Component/include/wdog.h\" #include \"F2802x_Component/include/sci.h\" #include \"F2802x_Component/include/cap.h\"

①/*Key.c*/

// the includes

#include \"User_Component/Key/Key.h\"

//

**************************************************************************

// the defines

//

**************************************************************************

// the globals

32

//

**************************************************************************

// the functions

// the function prototypes //! \\brief KEY initail //! \\param[in] None //! \\param[out] None void KEY_initial(void) {

} //

//! \\brief KEY configure //! \\param[in] None //! \\param[out] None void KEY_config(void)

{ //按键为GPIO12设置为输入口 //1. mode GPIO_setMode(KEY_obj, KEY1, GPIO_12_Mode_GeneralPurpose);

//2. direction GPIO_setDirection(KEY_obj, KEY1, GPIO_Direction_Input);

//3. pullup GPIO_setPullUp(KEY_obj, KEY1, GPIO_PullUp_Disable);

//4. qualification GPIO_setQualification(KEY_obj, KEY1, GPIO_Qual_Sync);

}

//! \\brief ScanKey API //! \\param[in] key

//! \\param[out] the state of KEY

uint16_t ScanKey(const GPIO_Number_e key) { return GPIO_getData(KEY_obj, key);

}

//! \\param[in] None //! \\param[out] None

void KEY_INT_config(void)

32

{ //(3). register PIR vector

PIE_registerPieIntHandler(myPie, PIE_GroupNumber_1, PIE_SubGroupNumber_4, (intVec_t) &KEY_xint1_isr);

//(4). module interrupt configure

PIE_setExtIntPolarity(myPie,CPU_ExtIntNumber_1, PIE_ExtIntPolarity_FallingEdge);

GPIO_setExtInt(myGpio, GPIO_Number_12, CPU_ExtIntNumber_1);

//(5). enable module IE PIE_enableExtInt(myPie, CPU_ExtIntNumber_1); //(6). enable PIEIERx.y PIE_enableInt(myPie, PIE_GroupNumber_1, PIE_InterruptSource_XINT_1);

//(7) enable CPU IERx CPU_enableInt(myCpu, CPU_IntNumber_1);

} //

//! \\brief Interrupt Service Routine //! \\param[in] None //! \\param[out] None

TARGET_EXT interrupt void KEY_xint1_isr(void); //redefined in Isr.h

// end of file

/*Key.h*/

#ifndef _KEY_H_ #define _KEY_H_

// the includes #include

// driver

#include \"F2802x_Component/F2802x_Device.h\"

#include \"User_Component/User_Mcu/User_System.h\"

32

#ifdef __cplusplus extern \"C\" { #endif

#ifndef TARGET_GLOBAL #define TARGET_EXT #else

#define TARGET_EXT #endif

/*------- hardware description of the example module -------------*/ // For example

// The module derived from GPIO

#define KEY_obj myGpio //here myGpio is defined in System.h

#define KEY1 GPIO_Number_12 //pin TARGET_EXT void KEY_initial(void); TARGET_EXT void KEY_config(void); TARGET_EXT void KEY_INT_config(void);

TARGET_EXT interrupt void KEY_xint1_isr(void); //redefined in Isr.h /*-------end of hardware description -------------*/

TARGET_EXT uint16_t ScanKey(const GPIO_Number_e key); /*-------end of API description -------------*/

#define KEYPressed 1

/*------- end of defines -------------*/

#ifdef __cplusplus }

#endif // extern \"C\"

#endif // end of _EXAMPLE_H_ definition

extern

32

②/*LED_PWM.c*/

// the includes

#include \"User_Component/LED_PWM/LED_PWM.h\"

// the functions

void LED_PWM_initial(void)

{

mycmp=0;

}

void LED_PWM_config(void) {

//GPIO的配置

GPIO_setMode(myGpio,GPIO_Number_0,GPIO_0_Mode_EPWM1A); GPIO_setPullUp(myGpio,GPIO_Number_0,GPIO_PullUp_Disable); //PWM的配置

CLK_disableTbClockSync(myClk); //PWM模块使能

CLK_enablePwmClock(myClk,PWM_Number_1); //设置PWM的时钟

//PWM_setClkDiv(myPwm1,PWM_ClkDiv_by_1);

PWM_setHighSpeedClkDiv(myPwm1, PWM_HspClkDiv_by_6); //计数器的设置

PWM_setCounterMode(myPwm1,PWM_CounterMode_Up); //PWM周期设置

PWM_setPeriod(myPwm1,10000); //设置周期加载模式

PWM_setPeriodLoad(myPwm1,PWM_PeriodLoad_Shadow); //比较点的设置

PWM_setCmpA(myPwm1,5000);

//PWM装载模式

PWM_setLoadMode_CmpA(myPwm1,PWM_LoadMode_Period); //动作

PWM_setActionQual_CntUp_CmpA_PwmA(myPwm1,PWM_ActionQual_Set);

PWM_setActionQual_Period_PwmA(myPwm1,PWM_ActionQual_Clear); //时钟同步

CLK_enableTbClockSync(myClk);

}

32

void LED_PWM_INT_config(void) {

PIE_registerPieIntHandler(myPie,PIE_GroupNumber_3,PIE_SubGroupNumber_1,(intVec_t)&(LED_PWM_isr));

//模块中断配置

PWM_setIntMode(myPwm1,PWM_IntMode_CounterEqualPeriod); PWM_setIntPeriod(myPwm1,PWM_IntPeriod_FirstEvent); //PWM中断使能

PWM_enableInt(myPwm1); //PIE开关的允许

PIE_enableInt(myPie, PIE_GroupNumber_3, PIE_InterruptSource_EPWM1); //CPU全局中断

CPU_enableInt(myCpu,CPU_IntNumber_3);

}

// end of file

/LED_PWM.h*/

#ifndef _LED_PWM_H_ #define _LED_PWM_H_

// the includes #include

// driver

#include \"F2802x_Component/F2802x_Device.h\"

#include \"User_Component/User_Mcu/User_System.h\"

#ifdef __cplusplus

32

extern \"C\" { #endif #ifndef TARGET_GLOBAL #define TARGET_EXT extern

#else

#define TARGET_EXT #endif /*------- hardware description of the example module TARGET_EXT void LED_PWM_initial(void); TARGET_EXT void LED_PWM_config(void); TARGET_EXT void LED_PWM_INT_config(void);

TARGET_EXT interrupt void LED_PWM_isr(void); /*-------end of hardware description -------------*/ TARGET_EXT uint16_t mycmp; #ifdef __cplusplus }

#endif // extern \"C\" #endif // end of _EXAMPLE_H_ definition ③/*MY_ADC.c*/

// the includes

#include \"User_Component/MY_ADC/MY_ADC.h\" // the functions

void MY_ADC_initial(void) {

32

-------------*/ //redefined in Isr.h

SET_TEMP=30; //初始设定温度为30摄氏度

}

void MY_ADC_config(void) { //ADC时钟使能

CLK_enableAdcClock(myClk); //初始化ADC模块

ADC_setVoltRefSrc(myAdc, ADC_VoltageRefSrc_Int); ADC_powerUp(myAdc); ADC_enableBandGap(myAdc);

ADC_enableRefBuffers(myAdc); ADC_enable(myAdc); //温度转换使能

ADC_enableTempSensor(myAdc); //soc配置

ADC_setSocChanNumber(myAdc, ADC_SocNumber_0, ADC_SocChanNumber_A5);

ADC_setSocSampleWindow(myAdc, ADC_SocNumber_0, ADC_SocSampleWindow_7_cycles);

ADC_setSocTrigSrc(myAdc, ADC_SocNumber_0, ADC_SocTrigSrc_EPWM1_ADCSOCA);

//PWM配置

PWM_setSocAPulseSrc(myPwm1,PWM_SocPulseSrc_CounterEqualZero); PWM_setSocAPeriod(myPwm1,PWM_SocPeriod_FirstEvent); PWM_enableSocAPulse(myPwm1);

}

void MY_ADC_INT_config(void) {

PIE_registerPieIntHandler(myPie,PIE_GroupNumber_10,PIE_SubGroupNumber_1,(intVec_t)&(MY_ADC_isr));

//模块中断配置

ADC_setIntPulseGenMode(myAdc, ADC_IntPulseGenMode_Prior); ADC_setIntSrc(myAdc,ADC_IntNumber_1, ADC_IntSrc_EOC0);

ADC_setIntMode(myAdc, ADC_IntNumber_1, ADC_IntMode_ClearFlag);

//ADC中断使能

ADC_enableInt(myAdc,ADC_IntNumber_1);

32

//PIE开关的允许 PIE_enableInt(myPie, PIE_GroupNumber_10, PIE_InterruptSource_ADCINT_10_1);

//CPU全局中断 CPU_enableInt(myCpu,CPU_IntNumber_10);

}

// end of file

/*MY_ADC.h*/

#ifndef _MY_ADC_H_ #define _MY_ADC_H_

// the includes #include

// driver

#include \"F2802x_Component/F2802x_Device.h\"

#include \"User_Component/User_Mcu/User_System.h\"

#ifdef __cplusplus extern \"C\" { #endif

#ifndef TARGET_GLOBAL #define TARGET_EXT #else

#define TARGET_EXT #endif

/*------- hardware description of the example module -------------*/ TARGET_EXT void MY_ADC_initial(void);

32

extern

TARGET_EXT void MY_ADC_config(void); TARGET_EXT void MY_ADC_INT_config(void);

TARGET_EXT interrupt void MY_ADC_isr(void); //redefined in Isr.h /*-------end of hardware description -------------*/

TARGET_EXT uint16_t MY_ADC;

TARGET_EXT uint16_t SET_TEMP;

/*------- end of globals -------------*/

#ifdef __cplusplus }

#endif // extern \"C\"

#endif // end of _EXAMPLE_H_ definition

④/*MY_CAP.c*/

// the includes

#include \"User_Component/MY_CAP/MY_CAP.h\"

#include \"User_Component/User_Mcu/User_System.h\"

void MY_CAP_initial(void) {

}

void MY_CAP_config(void) {

GPIO_setPullUp(myGpio, GPIO_Number_5, GPIO_PullUp_Enable); GPIO_setQualification(myGpio, GPIO_Number_5, GPIO_Qual_Sync); GPIO_setMode(myGpio, GPIO_Number_5, GPIO_5_Mode_ECAP1);

32

CLK_enableEcap1Clock(myClk);

CAP_disableInt(myCap, CAP_Int_Type_All); // 禁止CAP中断 CAP_clearInt(myCap, CAP_Int_Type_All); // 清除CAP中断标志位

CAP_disableCaptureLoad(myCap); // Disable CAP1-CAP4 register loads

CAP_disableTimestampCounter(myCap); // Make sure the counter is stopped

// Configure peripheral registers

CAP_setCapContinuous(myCap); // continuous CAP_setStopWrap(myCap, CAP_Stop_Wrap_CEVT4);// Stop at 3 events CAP_setCapEvtPolarity(myCap, CAP_Event_1, CAP_Polarity_Rising); // 捕获上升沿

CAP_setCapEvtPolarity(myCap, CAP_Event_2, CAP_Polarity_Falling); // 捕获下降沿

CAP_setCapEvtPolarity(myCap, CAP_Event_3, CAP_Polarity_Rising); // 捕获上升沿

CAP_setCapEvtReset(myCap, CAP_Event_3, CAP_Reset_Enable); // 重置计数器确保计数器不会溢出 CAP_enableTimestampCounter(myCap); // 打开计数器

CAP_enableCaptureLoad(myCap); // Enable CAP1-CAP4 register loads

/* CAP_enableInt(myCap, CAP_Int_Type_CEVT3); // 3个捕获点之后发生中断

// Register interrupt handlers in the PIE vector table PIE_registerPieIntHandler(myPie, PIE_GroupNumber_4, PIE_SubGroupNumber_1, (intVec_t)&ecap1_isr);

// Enable CPU INT4 which is connected to ECAP1-4 INT: CPU_enableInt(myCpu, CPU_IntNumber_4);

// Enable eCAP INTn in the PIE: Group 3 interrupt 1-6 PIE_enableCaptureInt(myPie); CPU_enableGlobalInts(myCpu); */ }

void MY_CAP_INT_config(void) {

CAP_enableInt(myCap, CAP_Int_Type_CEVT3); // 3 events = interrupt

// Register interrupt handlers in the PIE vector table

32

PIE_registerPieIntHandler(myPie, PIE_GroupNumber_4, PIE_SubGroupNumber_1, (intVec_t)&MY_CAP_isr);

// Enable CPU INT4 which is connected to ECAP1-4 INT: CPU_enableInt(myCpu, CPU_IntNumber_4); // Enable eCAP INTn in the PIE: Group 3 interrupt 1-6 PIE_enableCaptureInt(myPie); CPU_enableGlobalInts(myCpu);}

// end of file

/*MY_CAP.h*/

#ifndef _MY_CAP_H_ #define _MY_CAP_H_

// the includes #include

// driver

#include \"F2802x_Component/F2802x_Device.h\"

#ifdef __cplusplus extern \"C\" { #endif

#ifndef TARGET_GLOBAL #define TARGET_EXT #else

#define TARGET_EXT #endif

/*------- hardware description of the example module -------------*/ TARGET_EXT void MY_CAP_initial(void); TARGET_EXT void MY_CAP_config(void); TARGET_EXT void MY_CAP_INT_config(void);

TARGET_EXT interrupt void MY_CAP_isr(void); //redefined in Isr.h

32

extern

/*-------end of hardware description -------------*/

TARGET_EXT int NOW_PWM;

#ifdef __cplusplus }

#endif // extern \"C\"

#endif // end of _EXAMPLE_H_ definition

⑤/*mySci.c*/

// the includes

#include \"User_Component/mySci/mySci.h\"

// the functions

// the function prototypes //! \\brief SCI initail //! \\param[in] None //! \\param[out] None void SCI_initial(void) {

} //

//! \\brief SCI configure //! \\param[in] None //! \\param[out] None void SCI_config(void) { //1. GPIO configure //1.1 pullup

GPIO_setPullUp(myGpio, GPIO_Number_28, GPIO_PullUp_Enable); GPIO_setPullUp(myGpio, GPIO_Number_29, GPIO_PullUp_Disable); //1.2 input qualification

GPIO_setQualification(myGpio, GPIO_Number_28, GPIO_Qual_ASync); //1.3 mode

GPIO_setMode(myGpio, GPIO_Number_28, GPIO_28_Mode_SCIRXDA);

32

//SCI数据发送引脚

GPIO_setMode(myGpio, GPIO_Number_29, GPIO_29_Mode_SCITXDA); //SCI数据接收引脚 //2. enable SCIA clk

CLK_enableSciaClock(myClk);

//3. configure the low speed peripheral clock(LSPCLK) LSPCLK = SYSCLKOUT/4 =15MHz

CLK_setLowSpdPreScaler(myClk, CLK_LowSpdPreScaler_SysClkOut_by_4); //设置时钟分频

//4. SCI BRR = LSPCLK/(SCI BAUDx8) - 1

SCI_setBaudRate(mySci, SCI_BaudRate_9_6_kBaud); //设置波特率为9600

//5. configure package(1 stop bit, No loopback, No parity,8 char bits, async mode, idle-line protocol) SCI_disableParity(mySci);

SCI_setNumStopBits(mySci, SCI_NumStopBits_One); SCI_setCharLength(mySci, SCI_CharLength_8_Bits); //6. enable SCI TX&RX SCI_enableTx(mySci); SCI_enableRx(mySci);

//7.configure the SCI TX&RX FIFO //7.1 enable FIFO //先进先出

SCI_resetChannels(mySci); SCI_enableFifoEnh(mySci);

//7.2 configure TX FIFO SCI_resetTxFifo(mySci); //7.3 configure RX FIFO SCI_resetRxFifo(mySci); //8. enable SCI module SCI_enable(mySci); }

//! \\brief Transmit a string from the SCI //! \\param[in] string //! \\param[out] None

void scia_msg(char * msg) {

int i; i = 0;

while(msg[i] != '\\0') {

scia_xmit(msg[i]); i++;

32

} }

//! \\brief Transmit a char from the SCI //! \\param[in] char //! \\param[out] None void scia_xmit(int a) {

while(SCI_getTxFifoStatus(mySci) != SCI_FifoStatus_Empty) {} SCI_putDataBlocking(mySci, a); }

//! \\brief Receive a char from the SCI //! \\param[in] None

//! \\param[out] a:receive data

//! 00: no received /00: received

int scia_receive(uint16_t *a) {

if(SCI_getRxFifoStatus(mySci) < SCI_FifoStatus_1_Word) { return 0; } else {

*a = SCI_getData(mySci); }

return 1; }

// end of file

/*mySci.h*/

/

#ifndef _MYSCI_H_ #define _MYSCI_H_

//

*********************************************************************

32

*****

// the includes #include

// driver

#include \"F2802x_Component/F2802x_Device.h\"

#include \"User_Component/User_Mcu/User_System.h\"

#ifdef __cplusplus extern \"C\" { #endif

#ifndef TARGET_GLOBAL

#define TARGET_EXT extern #else

#define TARGET_EXT #endif

/*------- hardware description of the example module -------------*/

//

// the function prototypes //! \\brief SCI initail //! \\param[in] None //! \\param[out] None

TARGET_EXT void SCI_initial(void); //

//! \\brief SCI configure //! \\param[in] None //! \\param[out] None

TARGET_EXT void SCI_config(void); //

/*******************************************/ //! \\brief Interrup configure //! \\param[in] None //! \\param[out] None

//TARGET_EXT void SCI_INT_config(void); //

//! \\brief CPU Timer0 Interrupt Service Routine //! \\param[in] None //! \\param[out] None

//TARGET_EXT interrupt void SCI_isr(void); //redefined in Isr.h

32

/*-------end of hardware description -------------*/

TARGET_EXT void scia_msg(char * msg); TARGET_EXT void scia_xmit(int a);

TARGET_EXT int scia_receive(uint16_t *a); /*-------end of API description -------------*/

#ifdef __cplusplus }

#endif // extern \"C\"

#endif // end of _EXAMPLE_H_ definition

⑥/*User_System.c*/

#include \"User_Component/User_Mcu/User_System.h\"

// system initial

void System_initial(void) { }

void System_config(void) //system config {

//0.

myCpu = CPU_init((void *)NULL, sizeof(CPU_Obj));

myWDog = WDOG_init((void *)WDOG_BASE_ADDR, sizeof(WDOG_Obj)); myPll = PLL_init((void *)PLL_BASE_ADDR, sizeof(PLL_Obj)); myClk = CLK_init((void *)CLK_BASE_ADDR, sizeof(CLK_Obj)); myGpio = GPIO_init((void *)GPIO_BASE_ADDR, sizeof(GPIO_Obj));

myPie = PIE_init((void *)PIE_BASE_ADDR, sizeof(PIE_Obj)); //中断指针赋值

myTimer0 = TIMER_init((void *)TIMER0_BASE_ADDR, sizeof(TIMER_Obj)); // CPU Timer0

myPwm1 = PWM_init((void *)PWM_ePWM1_BASE_ADDR, sizeof(PWM_Obj)); // PWM1

32

myPwm2 = PWM_init((void *)PWM_ePWM2_BASE_ADDR, sizeof(PWM_Obj)); // PWM2

myAdc = ADC_init((void *)ADC_BASE_ADDR, sizeof(ADC_Obj)); mySci = SCI_init((void *)SCIA_BASE_ADDR, sizeof(SCI_Obj)); // SCIA myCap = CAP_init((void *)CAPA_BASE_ADDR, sizeof(CAP_Obj)); // 1. disable watch DOG WDOG_disable(myWDog); // 2. disable interrupt

CPU_disableGlobalInts(myCpu);

// 3. Select the internal oscillator 1(10MHz) as the clock source CLK_setOscSrc(myClk, CLK_OscSrc_Internal);

// 4. Setup the PLL for x12 /2 which will yield 60Mhz = 10Mhz * 12 / 2 PLL_setup(myPll, PLL_Multiplier_12, PLL_DivideSelect_ClkIn_by_2); // 5. PIE configure

PIE_disable(myPie); //禁止PIE

PIE_disableAllInts(myPie); //禁止PIE中断

CPU_disableGlobalInts(myCpu); //CPU全局中断禁止

CPU_clearIntFlags(myCpu); //CPU中断标志位清零

PIE_setDefaultIntVectorTable(myPie); //中断入口地址赋予默认值

PIE_enable(myPie); //使能PIE

}

void SystemINT_start(void) //User PIE start {

// (8)。 Enable Global Interrupts

CPU_enableGlobalInts(myCpu); //允许CPU全局中断 }

//===========================================================================

// End of file.

//===========================================================================

/*User_System.h*/

#ifndef USER_SYSTEM_H

32

#define USER_SYSTEM_H

#ifdef __cplusplus extern \"C\" { #endif

#ifndef TARGET_GLOBAL #define TARGET_EXT #else

#define TARGET_EXT #endif

//includes

#include \"F2802x_Component/F2802x_Device.h\"

TARGET_EXT CLK_Handle myClk; TARGET_EXT CPU_Handle myCpu; TARGET_EXT PLL_Handle myPll;

TARGET_EXT WDOG_Handle myWDog; TARGET_EXT PIE_Handle myPie; TARGET_EXT GPIO_Handle myGpio; TARGET_EXT TIMER_Handle myTimer0; TARGET_EXT PWM_Handle myPwm1; TARGET_EXT PWM_Handle myPwm2; TARGET_EXT ADC_Handle myAdc; TARGET_EXT SCI_Handle mySci; TARGET_EXT CAP_Handle myCap;

TARGET_EXT void System_initial(void); //system initial TARGET_EXT void System_config(void); //system config TARGET_EXT void SystemINT_start(void); //PIE start

#ifdef __cplusplus }

#endif /* extern \"C\" */

#endif

extern

⑦/*User_Device.h*/

32

#include \"User_Component/User_Mcu/User_System.h\"

#include \"User_Component/LED_GPIO/LED_GPIO.h\"

#include \"User_Component/LED_PWM/LED_PWM.h\"

#include \"User_Component/MY_ADC/MY_ADC.h\" #include \"User_Component/Key/Key.h\" #include \"User_Component/mySci/mySci.h\"

#include \"User_Component/MY_CAP/MY_CAP.h\"

⑧/*main.c*/

/*

* main.c */

#define TARGET_GLOBAL 1

#include \"User_Component/User_Device.h\" #include \"Application\\app.h\"

TARGET_EXT uint16_t NOW_CMPA;

//TARGET_EXT int NOW_PWM; //当前PWM占空比

char *msg; char buf[10]; void main(void) {

//1. configure

System_config(); LED_GPIO_config(); LED_PWM_config(); MY_ADC_config();

32

KEY_config(); SCI_config();

MY_CAP_config();

//

//2. initial

System_initial(); LED_GPIO_initial(); LED_PWM_initial(); MY_ADC_initial(); KEY_initial(); SCI_initial();

MY_CAP_initial();

//3. Interrupt configure and initial (if use interrupt) LED_PWM_INT_config(); MY_ADC_INT_config(); KEY_INT_config(); MY_CAP_INT_config();

//4. the global interrupt start (if use interrupt) SystemINT_start();

msg = \"\\r\\n\\n\\n虚拟温度控制系统!\\0\"; scia_msg(msg); //5. main LOOP for( ; ; ) {

//NOW_CMPA=PWM_getCmpA(myPwm1); //NOW_PWM=NOW_CMPA/100; // call API from app.h //led_control();

msg = \"\\r\\n\\n\\n current tempature: \\0\"; scia_msg(msg);

buf[0] = MY_ADC/10 + 48; buf[1] = MY_ADC%10 + 48; buf[2] = 0; msg = buf; scia_msg(msg);

32

msg = \"\\r\\n\\n\\n current PWM 占空比: \\0\"; scia_msg(msg);

buf[0] = NOW_PWM/10 + 48; buf[1] = NOW_PWM%10 + 48; buf[2] = 0; msg = buf; scia_msg(msg); delay(2000000);

msg = \"\\r\\n\\n\\n current SET tempature: \\0\"; scia_msg(msg);

buf[0] = SET_TEMP/10 + 48; buf[1] = SET_TEMP%10 + 48; buf[2] = 0; msg = buf; scia_msg(msg);

6、调试总结

首先,通过大分频从LED查看PWM模块是否正常工作。之后改变分频系数和周期实现1K Hz的PWM波。

然后,测试ADC模块。通过查看expression的变量查看温度。 测试CAP模块。通过expression查看PWM占空比是否正确。 最后测试SCI模块。将温度和占空比传送到上位机查看。 得到结果截图如下:

32

7、设计心得体会

通过这次课程设计,我对代码的模块化编程有了更深入的了解,通过模块化编程让整地代码的可读性有了很大的提高,也提高了编程的速度。同时也学习了通过查看芯片的手册,加深对函数的理解,例如通过看芯片手册波形,计数方式的查看令我加深对PWM,ECAP模块编程的理解。更好地理解各函数的用途。对课题的整体进行合理的布局,对CCS等软件的使用和调试也更加熟练。同时也通过与同学的交流沟通发现程序中自己没有发现的BUG,更加完善了代码。

8、参考文献

1、LAUNCHXL-F28027 C2000 Piccolo LaunchPad Experimenter Kit.pdf 2、王武,蔡逢煌.嵌入式系统技术基础与实践.福州大学电气工程与自动化学院

32

因篇幅问题不能全部显示,请点此查看更多更全内容