您的当前位置:首页正文

大数据处理及分析理论方法技术

2021-01-01 来源:客趣旅游网
大数据处理及分析理论方法技术

(一)大数据处理及分析建设的过程

随着数据的越来越多,如何在这些海量的数据中找出我们需要的信息变得尤其重要,而这也是大数据的产生和发展原因,那么究竟什么是大数据呢?当下我国大数据研发建设又有哪些方面着力呢?

一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。

二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。

三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。

四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

(二)大数据处理分析的基本理论

对于大数据的概念有许多不同的理解。中国科学院计算技术研究所李国杰院士认为:大数据就是“海量数据”加“复杂数据类型”。而维基百科中的解释为:大数据是由于规模、复杂性、实时性而导致的使之无法在一定时间内用常规软件工具对其进行获取、存储、搜索、分享、分析、可视化的数据集合。

对于“大数据”(Bigdata)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决

策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 体量大(volume速度快(velocity多模态(variety不确定(veracity价值大(value) 图2.1:大数据特征概括为5个V

(三)大数据处理及分析的方向

众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定

最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?

表2.1:数据分析的五个方面

可视化分析 法 数据挖掘耍预语数据质测性分义引擎 量与数据管析能力 理 大数据大数 大数据分大据分析的析的理论核心数据分大数据分析离不开使用者有就是数据挖掘析最终分析广数据质量和大数据分算法,各种数据要的应泛应用数据管理,析专家,挖掘的算法基用领域于网络高质量的数同时还有于不同的数据之一就数据挖据和有效的普通用类型和格式才是预测掘,可数据管理,户,但是能更加科学的性分从用户无论是在学他们二者呈现出数据本析,从的搜索术研究还是对于大数身具备的特点,大数据关键在商业应用据分析最也正是因为这中挖掘词、标领域,都能基本的要些被全世界统出

特签关键够保证分析

求就是可计学家所公认点,通词、或结果的真实视化分的各种统计方过科学其他输和有价值。析,因为法(可以称之为的建立入

语大数据分析

可视化分真理)才能深入模型,义,分的基础就是析能够直数据内部,挖掘之后便析,判以上五个方观的呈现出公认的价值。可以通断用户面,当然更大数据特另外一个方面过模型需求,加深入大数点,同时也是因为有这带入新从而实据分析的能够非常些数据挖掘的的

数现更好话,还有很

容易被读算法才能更快据,从的用户多很多更加者所接速的处理大数而预测体验和有特点的、受,就如据,如果一个算未来的广告匹更加深入同看图说法得花上好几数据。 配。 话一样简年才能得出结

的、更加专业的大数据

单明了。 论,那大数据的价值也就无从说起了。 (四)大数据处理及分析的方法

分析方法。 越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。

(五)大数据处理的过程

大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。

1.采集

大数据的采集是指利用多个数据库来接收发自客户端的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

2.统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

3.导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导

入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

4.挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。

(六)大数据处理的技术

数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

数据存取:关系数据库、NOSQL、SQL等。 基础架构:云存储、分布式文件存储等。

数据处理:自然语言处理是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机\"理解\"自然语言,所以自然语言处理又叫做自然语言理解,也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。

统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法

与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

数据挖掘:分类、估计、预测、相关性分组或关联规则、聚类、描述和可视化、、复杂数据类型挖掘(Text,Web,图形图像,视频,音频等)

模型预测:预测模型、机器学习、建模仿真。 结果呈现:云计算、标签云、关系图等。 (七)大数据处理及分析的意义

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分

布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。

(八)大数据处理及分析的发展趋势

随着数据的增多,人民对大数据的信息需求也在不断地增加,而大数据的未来发展趋势更人人民所关心,故未来的数据发展正在朝着以下的几个趋势发展。

数据的与云计科学理数据科数据泄数据管数据质数据生资源化 算的深论的突学和数露泛滥 理成为量是态系统度结合 破 据联盟的成立 核心竞BI(商复合化争力 业智程度加能)成强 图2.2:大数据的发展趋势图

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算

形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以

及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。

数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。

采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。

因篇幅问题不能全部显示,请点此查看更多更全内容