您的当前位置:首页正文

两角差的余弦公式

2023-08-31 来源:客趣旅游网

  两角差的余弦公式

  【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案

  2、有余力的学生可在完成探究案中的部分内容。

  【学习目标】

  知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。

  过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。

  情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。

  .【重点】通过探索得到两角差的余弦公式以及公式的灵活运用

  【难点】两角差余弦公式的推导过程

  预习自学案

  一、知识链接

  1. 写出 的三角函数线 :

  2. 向量 , 的数量积,

  ①定义:

  ②坐标运算法则:

  3. , ,那么 是否等于 呢?

  下面我们就探讨两角差的余弦公式

  二、教材导读

  1.、两角差的余弦公式的推导思路

  如图,建立单位圆O

  (1)利用单位圆上的三角函数线

  设

  则

  又OM=OB+BM

  =OB+CP

  =OA_____ +AP_____

  =

  从而得到两角差的余弦公式:

  ____________________________________

  (2)利用两点间距离公式

  如图,角 的终边与单位圆交于A( )

  角 的终边与单位圆交于B( )

  角 的终边与单位圆交于P( )

  点T( )

  AB与PT关系如何?

  从而得到两角差的余弦公式:

  ____________________________________

  (3) 利用平面向量的知识

  用 表示向量 ,

  =( , ) =( , )

  则 . =

  设 与 的夹角为

  ①当 时:

  =

  从而得出

  ②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =

  此时 =

  从而得出

  2、两角差的余弦公式

  ____________________________

  三、预习检测

  1. 利用余弦公式计算 的值.

  2. 怎样求 的值

  你的疑惑是什么?

  ________________________________________________________

  ______________________________________________________

  探究案

  例1. 利用差角余弦公式求 的值.

  例2.已知 , 是第三象限角,求 的值.

  训练案

  一、 基础训练题

  1、

  2、 ¬¬¬¬¬¬¬¬¬¬¬

  3、

  二、综合题

  --------------------------------------------------

因篇幅问题不能全部显示,请点此查看更多更全内容