您的当前位置:首页正文

圆的内接四边形

2020-08-15 来源:客趣旅游网

  1. 知识结构

  2. 重点、难点分析

  重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法.

  难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的

  外角和它的内对角的相互对应位置.

  3. 教法建议

  本节内容需要一个课时.

  (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究;

  (2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法.

  一、教学目标:

  (一)知识目标

  (1)了解圆内接多边形和多边形外接圆的概念;

  (2)掌握圆内接四边形的概念及其性质定理;

  (3)熟练运用圆内接四边形的性质进行计算和证明.

  (二)能力目标

  (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;

  (2)通过定理的证明探讨过程,促进学生的发散思维;

  (3)通过定理的应用,进一步提高学生的应用能力和思维能力.

  (三)情感目标

  (1)充分发挥学生的主体作用,激发学生的探究的热情;

  (2)渗透教学内容中普遍存在的相互联系、相互转化的观点.

  二、教学重点和难点:

  重点:圆内接四边形的性质定理.

  难点:定理的灵活运用.

  三、教学过程设计

  (一)基本概念

  如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆.

  (二)创设研究情境

  问题:一般的圆内接四边形具有什么性质?

  研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)

  教师组织、引导学生研究.

  1、边的性质:

  (1)矩形:对边相等,对边平行.

  (2)正方形:对边相等,对边平行,邻边相等.

  (3)等腰梯形:两腰相等,有一组对边平行.

  归纳:圆内接四边形的边之间看不出存在什么公同的性质.

  2、角的关系

  猜想:圆内接四边形的对角互补.

  第 1 2 页  

因篇幅问题不能全部显示,请点此查看更多更全内容