您的当前位置:首页正文

起跑线

2021-07-31 来源:客趣旅游网

  执教者: 邹 艳 湖北省襄樊市大庆路小学

  指导者: 朱贵刚 湖北省襄樊市樊城区教研室

  教学内容:人教版课程标准实验教材六年级上册第75—76页。

  一、教材分析:

  本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了“确定起跑线”这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

  二、学生分析:

  在教学本课之前,我通过调查了解到大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。例如:我们设计了一张答卷“请你画一个圆并且能够计算出这个圆的周长和面积”,请60名学生作答,其中98.3%的学生都能独立并且正确的完成。六年级的学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习,60名学生中100%的学生都喜欢小组合作的这种学习方式。

  通过调查我还发现学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在“相邻跑道相差多远”这一点上有些困难。

  三、学习目标:

  1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、通过活动培养学生利用小组合作,探究解决问题的能力。

  3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

  四、教学过程:

  课前谈话:

  同学们,前不久我们襄樊市承办了湖北省十二届运动会,我市的体育健儿们努力拼搏取得了优异的成绩。你们都看到比赛了吗?(学生回答)老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。

  [设计意图:课的开始通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理距离,激发学生的学习热情,创设宽松的课堂氛围,让学生在心理安全的状态下进入学习活动。]

  一、创设情景,提出问题(8分钟)

  1、情景导入:小动物的运动会。

  (多媒体播放)四只小兔子从同一条起跑线起跑 ,分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。

  师:同学们对这场比赛有什么看法吗?你有什么办法可以使比赛公平呢?

  [设计意图::数学课程标准中指出数学要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设良好的教学环境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开始在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经验发表了解决问题的方法,比如:学生提出将起跑线向前移动的方法,等等。激发了学生探究问题的欲望。]

  2、赛事回放:欣赏运动场上运动员起跑时的图片。

  教师同步讲解:同学们的想法与我们体育比赛中的想法一样,进行400米的比赛,如果从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原则,会将起跑线依次向前移。

  3、提出问题:体育比赛中,相邻两道起跑线都提前一定的距离,这个距离是随便移动的吗?相邻起跑线相差多少米?你能看出来吗?

  4、揭示课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。

  (板书课题:确定起跑线)

  [设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的体现了数学是来源于生活,利用学生的发现提出问题:起跑线提前的距离是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]

  二、观察跑道、探究问题 (24分钟)

  (一)了解跑道结构:出示完整跑道图(共四道,跑道最内圈为400米)

  1、观察跑道由哪几部分组成?

  2、在跑道上跑一圈的长度可以看成是哪几部分的和?

  (板书:跑道一圈长度=圆周长+2个直道长度)

  [设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的秘密:左右两个弯道合起来其实是个圆。]

  (二)简化研究问题:

  1、85.96米是指哪部分的长度?一条直道吗?

  2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

  3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

  [设计意图:学生在观察中发现相邻跑道的差距没有在直道部分,有学生想到会在弯道部分。在这里教师做了一个大胆的创新:既然与直道无关,就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的思考空间。]

  (三)寻求解决方法:

  1、左右两个半圆形的弯道合起来是一个什么?

  2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

  3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

  [设计意图:新课程标准中指出,教师要积极利用各种教学资源,创造性地使用教材,设计符合学生发展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]

  (四)、动手解决问题:

  1、计算圆的周长要知道什么?(直径)

  2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

  3、教师带领学生填写表格的前两道,剩下的由学生完成。

  跑道 直径(米) 周长(米) 相邻跑道相差长度(米)

  1. 72.6 72.6∏

  2. 72.6+2.5 (72.6+2.5)∏ (72.6+2.5)∏-72.6∏=2.5∏

  3.

  4.

  4、汇报结论:相邻起跑线相差都是2.5∏,也就是道宽×2×∏。说明起跑线的确定与道宽最有关系。

  5、计算相邻起跑线相差的具体长度:2.5∏=2.5×3.14=7.85米

  师:同学们通过努力找到了起跑线的秘密,小动物们的比赛应该把起跑线依次提前7.85米才公平。

  [设计意图:学生在教师的组织、引导下开展小组合作学习,通过填写表格,找出确定起跑线的规律:即400米起跑线差距是2.5∏,为了便于学生发现规律及后面的计算,均用代数式来表示,减轻了学生的计算负担,同时也提升了学生的数学思维品质。学生在探究活动中不仅加强了对所学知识的理解,同时获得了运用数学解决问题的思考方法,学会了与他人合作,学生的数学素养得到提高。]

  三、巩固练习、实践应用 (3分钟)

  师:小动物们很感谢同学们的帮助,可是它们在比赛时调整了道宽,你能帮它们再计算一下吗?

  400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

  生:1.5×2×∏=3×3.14=9.42(米)

  四、拓展延伸、自我评价 (5分钟)

  1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

  预设生1:道宽与前面的400米一样,我可以用前面算的7.58米除以2,是3.79米。

  预设生2:200米的比赛就只跑了400米的一半,跑了一个弯道,只增加了一个道宽,就可以直接用道宽×∏。

  2、比较方法:同学们想的很巧妙,谁的更实用呢?

  3、全课小结:谈一谈,这节课你有什么收获?

  [设计意图:数学的学习要应用于生活,但是不要死搬硬套。生活中的问题很多,学生通过对400米跑道起跑线的确定,让他们能灵活的运用知识解决其他类似的问题,小小的拓展练习打开了学生思维的空间,开发出学生的无限智慧,使学生的知识变的鲜活起来。]

因篇幅问题不能全部显示,请点此查看更多更全内容