您的当前位置:首页正文

Termination of λ-calculus with an extra call-by-value rule

2021-08-17 来源:客趣旅游网
Terminationofλ-calculuswithanextracall-by-valuerule

StéphaneLengrand1,2

1

CNRS,EcolePolytechnique,France2

UniversityofStAndrews,ScotlandLengrand@LIX.Polytechnique.fr

26thNovember2007

NotationsandstandardresultsarepresentedinAppendixA.Weconsiderthefollowingruleinλ-calculus:

assoc(λx.M)((λy.N)P)−→(λy.(λx.M)N)P)

Wewanttoprove

Proposition1SNβ⊆SNassocβ.

Lemma1−→σisterminatinginλ-calculus.

Proof:Eachapplicationoftheruledecreasesbyonethenumberofpairsofλthatarenotnested.2ToproveProposition1above,itwouldthusbesufficienttoprovethat−→assoccouldbeadjournedwithrespectto−→β,inotherwordsthat−→assoc·−→β⊆−→β·−→∗assocβ(theadjournmenttechniqueleadsdirectlytothedesiredstrongnormalisationresult).Whentryingtoprovethepropertybyinductionandcaseanalysisontheβ-reductionfollowingtheassoc-reductiontobeadjourned,allcasesallowtheadjournmentbutone,namely:

󰀈󰀁

(λx.M)((λy.N)P)−→assoc(λy.(λx.M)N)P−→β(λy.N󰀁xM)PHence,weshallassumewithoutlossofgeneralitythattheβ-reductionisnotoftheabovekind.Forthatweneedtoidentifyasub-relationofβ-reduction󰀅→suchthat

•−→assoccannowbeadjournedwithrespectto󰀅→•wecanjustifythatthereisnolossofgenerality.

Forthiswegiveourselvesthepossibilityofmarkingλ-redexesandforbidreductionsundertheir(marked)bindings,sothat,ifintheassoc-reductionabovewemakesurethat(λy.(λx.M)N)P)ismarked,theproblematicβ-reductionisforbidden.

Henceweusetheusualnotationforamarkedredex(λy.Q)P,butwecanalsoseeitastheconstructlety=PinQofλC[Mog88]andotherworksoncall-by-valueλ-calculus.Westartwithareminderaboutmarkedredexes.Definition1Thesyntaxoftheλ-calculusisextendedasfollows:

M,N::=x|λx.M|MN|(λx.M)N

1

Reductionisgivenbythefollowingsystemβ12:

β1(λx.M)Nβ2(λx.M)N

󰀈󰀁−→󰀈M󰀁x󰀁N

M

−→󰀁xN

Theforgetfulprojectionontoλ-calculusisstraightforward:

φ(x)

φ(λx.M)φ(MN)

φ((λx.M)N)

:=:=:=:=

x

λx.φ(M)φ(M)φ(N)

(λx.φ(M))φ(N)

throughφ−1and−→β

Remark2Clearly,−→β12stronglysimulates−→βstronglysimulates−→β12throughφ.

Reducingunderλanderasingλcanbestronglyadjourned

Inthissectionweidentifythereductionnotion󰀅→(⊆−→β12)andweargueagainstthelossofgeneralitybyprovingthat−→β12·󰀅→⊆󰀅→·(−→β12∪󰀅→)+,astrongcaseofadjournment,presentedinAppendixB,whosedirectcorollaryisthat,foreverysequenceofβ12-reduction,thereisalsoasequenceof󰀅→-reductionofthesamelengthandstartingfromthesameterm.

Wethussplitthereductionsystemβ12intotwocasesdependingonwhetherornotareductionthrowsawayanargumentthatcontainssomemarkings:Definition2

󰀂

(λx.M)P

βκ

󰀂(λx.M)P(λx.M)P

βκ(λx.M)P

−→−→−→−→MMMMifx∈FV(M)andthereisaterm(λx.N)Q󰀜Pifx∈FV(M)andthereisaterm(λx.N)Q󰀜Pifx∈FV(M)orthereisnoterm(λx.N)Q󰀜Pifx∈FV(M)orthereisnoterm(λx.N)Q󰀜P

Remark3Clearly,−→β12=−→βκ∪−→βκ.

Nowedistinguishwhetherornotareductionoccursunderneathamarkedredex,viathefollowingruleandthefollowingnotionofcontextualclosure:Definition3

β(λx.M)P

−→(λx.N)P

ifM−→β12N

Nowwedefineaweaknotionofcontextualclosureforarewritingsystemi:

i:M−→NM󰀄iN

M󰀄iNλx.M󰀄iλx.N

M󰀄iNMP󰀄iNP

M󰀄iNPM󰀄iPN

M󰀄iN

(λx.P)M󰀄i(λx.P)N

Finallyweusethefollowingabbreviations:

Definition4Let󰀅→:=󰀄βκand;1:=󰀄βκand;2:=󰀄β.Remark4Clearly,−→β12=󰀅→∪;1∪;2.

Lemma5If(λx.N)Q󰀜P,thenthereisP󰀅suchthatP󰀅→P󰀅.

2

Proof:ByinductiononP

•ThecaseP=yisvacuous.

•ForP=λy.M,wehave(λx.N)Q󰀜MandtheinductionhypothesisprovidesM󰀅→M󰀅,soλy.M󰀅→λy.M󰀅.

•ForP=M1M2,wehaveeither(λx.N)Q󰀜M1or(λx.N)Q󰀜M2.In

󰀅

theformercasetheinductionhypothesisprovidesM1󰀅→M1,soM1M2󰀅→󰀅

M1M2.Thelattercaseissimilar.•SupposeP=(λy.M1)M2.Ifthereisaterm(λx󰀅.N󰀅)Q󰀅󰀜M2,theinduction

󰀅󰀅

hypothesisprovidesM2󰀅→M2,so(λy.M1)M2󰀅→(λy.M1)M2.Ifthereisno󰀈󰀁

2

suchterm(λx󰀅.N󰀅)Q󰀅󰀜M2,wehave(λy.M1)M2󰀅→M󰀁yM1.

2

Lemma6;1⊆󰀅→·;1

Proof:Byinductiononthereductionstep;1.

Forthebasecases(λx.M)P−→βκMor(λx.M)P−→βκMwithx∈FV(M)and(λy.N)Q󰀜P,Lemma5providesthereductionP󰀅→P󰀅,so(λx.M)P󰀅→(λx.M)P󰀅;1Mand(λx.M)P󰀅→(λx.M)P󰀅;1M.

Theinductionstepisstraightforwardasthesamecontextualclosureisusedonbothsides(namely,theweakone).2Lemma7;2·󰀅→⊆󰀅→·−→+β12

Proof:Byinductiononthereductionstep󰀅→.SeeappendixC.Corollary8−→β12canbestronglyadjournedwithrespectto󰀅→.Proof:Straightforwardfromthelasttwotheorems,andRemark4.

22

assoc-reduction

Weintroducetwonewrulesinthemarkedλ-calculustosimulateassoc:

assocact

(λx.M)(λy.N)P(λx.M)N

−→(λy.(λx.M)N)P−→(λx.M)N

Remark9Clearly,−→assocactstronglysimulates−→assocthroughφ−1.

Noticethatwiththelet=in-notation,assocandactaresimplytherulesofλC

assocact

letx=(lety=PinN)inM(λx.M)N

−→lety=Pinletx=NinM−→letx=NinM

Lemma10−→assocact·󰀅→⊆󰀅→·−→∗assocactProof:Byinductiononthereductionstep󰀅→.SeeappendixC.

2

3

Lemma11−→∗→β12canbestronglyadjournedwithrespectto󰀅→.assoc,act·−

kProof:Weprovethat∀k,−→assoc→β12·󰀅→⊆󰀅→·−→∗→β12by,act·−assoc,act·−inductiononk.

•Fork=0,thisisCorollary8.

•Supposeitistruefork.Bytheinductionhypthesisweget

−→assoc,act·−→k→β12·󰀅→⊆−→assoc,act·󰀅→·−→∗→β12assoc,act·−assoc,act·−ThenbyLemma10weget

−→assoc,act·󰀅→·−→∗→β12⊆󰀅→·−→assoc,act·−→∗→β12assoc,act·−assoc,act·−

2

Remark12NotefromLemma5thatnf󰀃→⊆nf;1∪;2⊆nf−→β12⊆nf−→assoc,act·−→β12.Theorem13BN󰀃→⊆BN−→assoc,act·−→β12

Proof:WeapplyTheorem28,sincenf󰀃→⊆nf−→assoc,act·−→β12andclearly

(−→assoc→β12)∪󰀅→=−→∗→β12,act·−assoc,act·−

2

Theorem14BNβ⊆BN−→assoc·−→β

Proof:Since−→βstronglysimulates󰀅→throughφ,wehaveφ−1(BNβ)⊆

∗∗

BN󰀃→⊆BN−→assoc,act·−→β12.Henceφ(φ−1(BNβ))⊆φ(BN−→assoc,act·−→β12).Since

φissurjective,BNβ=φ(φ−1(BNβ)).HenceBNβ⊆φ(BN−→assoc,act·−→β12).Also,

∗−→assoc→β12stronglysimulates−→∗→βthroughφ−1,soassoc·−,act·−∗∗

2φ(BN−→assoc,act·−→β12)⊆BN−→assoc·−→β.Theorem15SNβ⊆SNassocβ

Proof:First,fromLemma19,BN−→assoc·−→β⊆SN−→assoc·−→β.Thenfrom

Lemma1,−→associsterminatingandhenceSNassocisstableunder−→β.Hence

wecanapplyLemma24togetSNassocβ=SN−→assoc·−→β.FromtheprevioustheoremwethushaveBNβ⊆SNassocβ.Now,noticingthatβ-reductioninλ-calculusisfinitelybranching,Lemma18givesBNβ=SNβandthusSNβ⊆SNassocβ.2

References

[Mog88]E.Moggi.Computationallambda-calculusandmonads.ReportECS-LFCS-88-66,UniversityofEdinburgh,Edinburgh,Scotland,October1988.

4

A

Reminder:Notations,DefinitionsandBasicRe-sults

•Wedenotethecompositionofrelationsby·,theidentityrelationbyId,andtheinverseofarelationby−1.•󰀃IfD⊆A,wewriteR(D)for{M∈B|∃N∈D,NRM},orequivalently

N∈D{M∈B|NRM}.WhenDisthesingleton{M},wewriteR(M)forR({M}).

•WesaythatarelationR:A−→BistotalifR−1(B)=A.

Definition5(Relations)

Remark16Compositionisassociative,andidentityrelationsareneutralforthecompositionoperation.

Definition6(Reductionrelation)

•AreductionrelationonAisarelationfromAtoA.

•Givenareductionrelation→onA,wedefinethesetof→-reducibleforms(orjustreducibleformswhentherelationisclear)asrf→:={M∈A|∃N∈A,M→N}.Wedefinethesetofnormalformsasnf→:={M∈A|∃N∈A,M→N}.

•Givenareductionrelation→onA,wewrite←for→−1,andwedefine→nbyinductiononthenaturalnumbernasfollows:→0:=Id

→n+1:=→·→n(=→n·→)󰀃

→+denotesthetransitiveclosureof→(i.e.→+:=n≥1→n).󰀃

→∗denotesthetransitiveandreflexiveclosureof→(i.e.→∗:=n≥0→n).↔denotesthesymmetricclosureof→(i.e.↔:=←∪→).

↔∗denotesthetransitive,reflexiveandsymmetricclosureof→.

•AnequivalencerelationonAisatransitive,reflexiveandsymmetricreductionrelationonA,i.e.arelation→=↔∗,hencedenotedmoreoftenby∼,≡...•Givenareductionrelation→onAandasubsetB⊆A,theclosureofBunder→is→∗(B).

Definition7(Finitelybranchingrelation)Areductionrelation→onAisfinitelybranchingif∀M∈A,→(M)isfinite.

Definition8(Stability)Givenareductionrelation→onA,wesaythatasubsetTofAis→-stable(orstableunder→)if→(T)⊆T.

Definition9(Strongsimulation)

LetRbearelationbetweentwosetsAandB,respectivelyequippedwiththereductionrelations→Aand→B.

−1

→Bstronglysimulates→AthroughRif(R−1·→A)⊆(→+).B·RRemark17

󰀅1.If→Bstronglysimulates→AthroughR,andif→B⊆→󰀅Band→A⊆→A,then

󰀅

→󰀅Bstronglysimulates→AthroughR.

5

2.If→Bstronglysimulates→Aand→󰀅AthroughR,thenitalsostronglysim-󰀅

ulates→A·→AthroughR.3.Hence,if→Bstronglysimulates→AthroughR,thenitalsostronglysimulates→+AthroughR.Definition10(Patriarchal)Givenareductionrelation→onA,wesaythat•asubsetTofAis→-patriarchal(orjustpatriarchalwhentherelationisclear)if∀N∈A,→(N)⊆T⇒N∈T.•apredicatePonAispatriarchalif{M∈A|P(M)}ispatriarchal.

Definition11(Normalisingelements)Givenareductionrelation→onA,thesetof→-stronglynormalisingelementsis

󰀅

SN→:=T

TispatriarchalDefinition12(Boundedelements)Thesetof→-boundedelementsisdefinedas󰀄

BN→:=BN→n

n≥0

whereBN→nisdefinedbyinductiononthenaturalnumbernasfollows:

BN→0

BN→n+1

:=nf→

:={M∈A|∃n󰀅≤n,→(M)⊆BN→n󰀁}

Lemma18If→isfinitelybranching,thenBN→ispatriarchal.

Asaconsequence,BN→=SN→.Lemma19

→→→→

1.Ifn2.BN→⊆SN→.Lemma20

1.SN→ispatriarchal.

2.IfM∈BN→then→(M)⊆BN→.IfM∈SN→then→(M)⊆SN→.

Theorem21(Inductionprinciple)GivenapredicatePonA,suppose∀M∈SN→,(∀N∈→(M),P(N))⇒P(M).Then∀M∈SN→,P(M).

WhenweusethistheoremtoproveastatementP(M)forallMinSN→,wejustadd(∀N∈→(M),P(N))totheassumptions,whichwecalltheinductionhypothesis.

WesaythatweprovethestatementbyinductioninSN→.Lemma22

1.If→1⊆→2,thennf→1⊇nf→2,SN→1⊇SN→2,

→21

andforalln,BN→n⊇BNn.

6

2.nf→=nf→,SN→=SN→,andforalln,BN→=BN→nn.

Noticethatthisresultenablesustouseastrongerinductionprinciple:inordertoprove∀M∈SN→,P(M),itnowsufficestoprove

∀M∈SN→,(∀N∈→+(M),P(N))⇒P(M)

ThisinductionprincipleiscalledthetransitiveinductioninSN→.

Theorem23(Strongnormalisationbystrongsimulation)LetRbearela-tionbetweenAandB,equippedwiththereductionrelations→Aand→B.

If→Bstronglysimulates→AthroughR,thenR−1(SN→B)⊆SN→A.Lemma24Giventworeductionrelations→1,→2,supposethatSN→1isstable∗

under→2.ThenSN→1∪→2=SN→1·→2∩SN→1.

+++

BStrongadjournment

Definition13Suppose→AisareductionrelationonA,→BisareductionrelationonB,RisarelationfromAtoB.

→Bsimulatesthereductionlengthsof→AthroughRif

k

∀k,∀M,N∈A,∀P∈B,M→kAN∧MRP⇒∃Q∈B,P→BQ

Lemma25Suppose→AisareductionrelationonA,→Bisareductionrelation

onB,RisarelationfromAtoB.

If→Bstronglysimulates→AthroughR,then→Bsimulatesthereductionlengthsof→AthroughR.

Proof:Weprovebyinductiononkthat∀k,∀M,N∈A2,∀P∈B,M→kA

k

N∧MRP⇒∃Q,P→BQ.•Fork=0:takeQ:=M=N.

•SupposeitistrueforkandtakeM→AM󰀅→kAN.Thestrongsimulation+󰀅󰀅󰀅󰀅

givesPsuchthatP→BPandMRP.TheinductionhypothesisgivesQ󰀅

k+1󰀅

suchthatP󰀅→kQ(oflengthBQ.ThenitsufficestotaketheprefixP→B

+󰀅k󰀅

k+1)ofP→BP→BQ.

2

Lemma26∀n,∀M,

(∀k,∀N,M→kN⇒k≤n)

⇐⇒

M∈BN→n

Proof:Bytransitiveinductiononn.

•Forn=0:clearlybothsidesareequivalenttoM∈nf→.•Supposeitistrueforalli≤n.

Suppose∀k,∀N,M→kN⇒k≤n+1.ThentakeM→M󰀅andassume

󰀁󰀁

M󰀅→kN󰀅.WehaveM→k+1N󰀅sofromthehypothesiswederivek󰀅+1≤n+1,i.e.k󰀅≤n.WeapplytheinductionhypothesisonM󰀅andget

→→

M󰀅∈BN→n.BydefinitionofBNn+1wegetM∈BNn+1.

kConversely,supposeM∈BN→n+1andM→N.Wemustprovethatk≤n+1.󰀁

Ifk=0wearedone.Ifk=k󰀅+1wehaveM→M󰀅→kN;bydefinitionof

→󰀅

BN→n+1thereisi≤nsuchthatM∈BNi,andbyinductionhypothesiswehavek󰀅≤i;hencek=k󰀅+1≤i+1≤n+1.

2

7

Theorem27Suppose→AisareductionrelationonA,→BisareductionrelationonB,RisarelationfromAtoB.

If→Bsimulatesthereductionlengthsof→AthroughR,then

→AB

∀n,R−1(BN→n)⊆BNn

(⊆SN→A)

󰀅B

Proof:SupposeN∈BN→andMRN.IfM→knAMthenbysimulation

󰀅

N→kBNsobyLemma26wehavek≤n.Henceby(theotherdirectionof)

A

Lemma26wehaveM∈BN→2n.

Definition14Let→1and→2betworeductionrelationsonA.Therelation→1canbestronglyadjournedwithrespectto→2if

wheneverM→1N→2PthereexistsQsuchthatM→2Q(→1∪→2)+P.Theorem28Let→1and→2betworeductionrelationsonA.Ifnf→2⊆nf→1and→1canbestronglyadjournedwithrespectto→2thenBN→2⊆BN→1∪→2.Proof:FromTheorem27,itsufficestoshowthat→2simulatesthereductionlengthsof→1∪→2throughtheidentity.Weshowbyinductiononkthat

∀k,∀M,N,M(→1∪→2)kN⇒∃Q,M→k2Q

•Fork=0:takeQ:=M

•Fork=1:IfM→2NtakeQ:=N;ifM→1Nusethehypothesis

nf→2⊆nf→1toproduceQsuchthatM→2Q.

•Supposeitistruefork+1andtakeM(→1∪→2)P(→1∪→2)k+1N.

+1

TheinductionhypothesisprovidesTsuchthatP→kT,inotherwords2

k

P→2S→2T.

IfM→2Pwearedone.IfM→1PweusethehypothesisofadjournmenttotransformM→1P→2SintoM→2P󰀅(→1∪→2)+S.TaketheprefixP󰀅(→1∪→2)k+1R(oflengthk+1)ofP󰀅(→1∪→2)+S→k2T,andapply

k+1󰀅

onthisprefixtheinductionhypothesistogetP→2R.Wethusget

k+2

M→2R.

2

CProofs

Lemma7;2·󰀅→⊆󰀅→·−→+β12

Proof:Byinductiononthereductionstep󰀅→.

•Forthebasecasewhere󰀈P󰀁theβκ-reductionisaβ2-reduction,wehave

M;2(λx.N)P󰀅→󰀁xNwithx∈FV(N)orPhasnomarkedredexasasubterm.WedoacaseanalysisonthereductionstepM;2(λx.N)P.

󰀅󰀅

If→β12Nthen(λx.N󰀅)P󰀅→2(λx.N)PbecauseN−󰀈PM󰀁=󰀅(λx.N)P󰀈P;󰀁󰀁xN−→β12󰀁xN.

IfM=(λx.N)P󰀅;2(λx.N)PbecauseP󰀅;2P,thenitmeansthatPhasamarkedsowemusthavex∈FV(N).Hence󰀆󰀁redex󰀇asasubterm,󰀈󰀁P(λx.N)P󰀅󰀅→P󰀁→+󰀁xN−xN.β12

8

•Forthebasecasewhere󰀈P󰀁theβκ-reductionisaβ1-reduction,wehaveM;2(λx.N)P󰀅→󰀁xNwithx∈FV(N)orPhasnomarkedredexasasubterm.WedoacaseanalysisonthereductionstepM;2(λx.N)P.IfM=M󰀅P;2(λx.N)PbecauseM󰀅;2λx.N󰀈thenM󰀅mustbeofthe󰀁󰀅󰀅formλx.M󰀅󰀅withM󰀅󰀅;2N.Then(λx.M󰀅󰀅)P󰀅→P󰀁PhasxM󰀈(in󰀁caseP󰀅󰀅󰀅󰀅amarkedsubterm,noticethatx∈FV(N)⊆FV(M)),and󰀁xM−→β12󰀈P󰀁󰀁xN.

IfM=(λx.N)P󰀅;2(λx.N)PbecauseP󰀅;2P,thenitmeansthatPhasamarkedsowemusthavex∈FV(N).Hence󰀆󰀁redex󰀇asasubterm,󰀈󰀁P(λx.N)P󰀅󰀅→P󰀁→+󰀁xN−xN.β12•Theclosureunderλisstraightforward.

•Fortheclosureunderapplication,left-handside,wehaveM;2NP󰀅→N󰀅PwithN󰀅→N󰀅.WedoacaseanalysisonthereductionstepM;2NP.IfM=M󰀅P;2NPwithM󰀅;2N,theinductionhypothesisgives

󰀅󰀅󰀅

M󰀅󰀅→·−→+→·−→+β12NandtheweakcontextualclosuregivesMP󰀅β12NP.IfM=NP󰀅;2NPwithP󰀅;2P,wecanalsoderiveNP󰀅󰀅→N󰀅P󰀅−→β12N󰀅P.

•Fortheclosureunderapplication,right-handside,wehaveM;2NP󰀅→NP󰀅withP󰀅→P󰀅.WedoacaseanalysisonthereductionstepM;2NP.IfM=M󰀅P;2NPwithM󰀅;2N,wecanalsoderiveM󰀅P󰀅→M󰀅P󰀅−→β12NP󰀅.

IfM=NM󰀅;2NPwithM󰀅;2P,theinductionhypothesisgives

󰀅󰀅󰀅

M󰀅󰀅→·−→+→·−→+β12PandtheweakcontextualclosuregivesNM󰀅β12NP.•FortheclosureundermarkedredexwehaveM;2(λx.P)N󰀅→(λx.P)N󰀅withN󰀅→N󰀅.WedoacaseanalysisonthereductionstepM;2(λx.P)N.IfM=(λx.P󰀅)N;2(λx.P)NbecauseP󰀅−→β12P,wecanalsoderive(λx.P󰀅)N󰀅→(λx.P󰀅)N󰀅−→β12(λx.P)N󰀅.

IfM=(λx.P)M󰀅;2(λx.P)NwithM󰀅;2N,theinductionhypothesis

󰀅󰀅

givesM󰀅󰀅→Q−→+→β12Nandtheweakcontextualclosuregives(λx.P)M󰀅

󰀅

(λx.P)Q−→+β12(λx.P)N.

2

Lemma10−→assocact·󰀅→⊆󰀅→·−→assocactProof:Byinductiononthereductionstep󰀅→.

󰀈󰀁

•Forthefirstbasecase,wehaveM−→assocact(λx.N)P󰀅→P󰀁xNwithx∈FV(N)orPhasnomarkedsubterm.Sincerootassocact-reductionpro-ducesneitherλ-abstractionsnorapplicationsattheroot,notethatMhastobeoftheform(λx.N󰀅)P󰀅,witheitherN󰀅−→assocactN(andP󰀅=P)or

FV(N)⊆FV(N󰀅)orP󰀅hasP󰀅−→assocactP(andN󰀅=N).Inbothcases,x∈󰀆󰀇󰀈P󰀁󰀁

nomarkedsubterm,sowealsohave(λx.N󰀅)P󰀅󰀅→P󰀁xN󰀅−→∗󰀁xN.assocact󰀈󰀁•Forthesecondbasecase,wehaveM−→assocact(λx.N)P󰀅→P󰀁xNwithx∈FV(N)orPhasnomarkedsubterm.WedoacaseanalysisonM−→assocact(λx.N)P.

9

IfM=(λx󰀅.M1)(λx.M2)P−→assoc(λx.(λx󰀅.M1)M2)P󰀈with󰀁N=󰀅󰀅󰀅P(.MxM2=󰀈λx󰀁1)M2,wealsohaveM=(λx.M1)(λx.M2)P󰀅→(λx.M1)󰀁P

󰀁xN.

󰀈󰀁

IfM=(λx.N)P−→act(λx.N)PthenM󰀅→P󰀁xN.IfM=(λx.N󰀅)P󰀅−→assocact(λx.N)PwitheitherN󰀅−→assocactN(andP󰀅=P)orP󰀅−→assocactP(andN󰀅=N),wehave,inbothcases,x∈FV(N)⊆FV(N󰀅)orP󰀅hasnomarkedsubterm,sowealsohave(λx.N󰀅)P󰀅󰀅→󰀆󰀁󰀇󰀈P󰀁P󰀅∗󰀁N−→󰀁xxN.assocact•Theclosureunderλisstraightforward.

•Fortheclosureunderapplication,left-handside,wehaveQ−→assocactMN󰀅→M󰀅NwithM󰀅→M󰀅.WedoacaseanalysisonQ−→assocactMN.IfQ=M󰀅󰀅N−→assocactMNwithM󰀅󰀅−→assocactM,theinduction

󰀅󰀅󰀅∗

hypothesisprovidesM󰀅󰀅󰀅→·−→∗→·−→assocactM󰀅N.assocactMsoMN󰀅IfQ=MN󰀅−→assocactMNwithN󰀅−→assocactN,wealsohaveMN󰀅󰀅→M󰀅N󰀅−→assocactM󰀅N.

•Fortheclosureunderapplication,right-handside,wehaveQ−→assocactMN󰀅→MN󰀅withN󰀅→N󰀅.WedoacaseanalysisonQ−→assocactMN.IfQ=M󰀅N−→assocactMNwithM󰀅−→assocactM,wealsohaveM󰀅N󰀅→M󰀅N󰀅−→assocactMN󰀅.

IfQ=MN󰀅󰀅−→assocactMNwithN󰀅󰀅−→assocactN,theinductionhypoth-∗∗

esisprovidesN󰀅󰀅󰀅→·−→assocactN󰀅soMN󰀅󰀅󰀅→·−→assocactMN󰀅.•Fortheclosureundermarkedredex,the󰀅→-reductioncanonlycomefromtheright-handsidebecauseoftheweakcontextualclosure(󰀅→doesnotreduceunderλ),sowehaveQ−→assocact(λy.M)P󰀅→(λy.M)P󰀅withP󰀅→P󰀅.WedoacaseanalysisonQ−→assocact(λy.M)P.

IfQ=(λx.M󰀅)(λy.N)P−→assoc(λy.(λx.M󰀅)N)PwithM=(λx.M󰀅)N,

wealsohaveQ=(λx.M󰀅)(λy.N)P󰀅→(λx.M󰀅)(λy.N)P󰀅−→assoc(λy.(λx.M󰀅)N)P󰀅.IfQ=(λy.M)P−→act(λy.M)P,thenwealsohaveQ=(λy.M)P󰀅→(λy.M)P󰀅−→act(λy.M)P󰀅.

2

10

因篇幅问题不能全部显示,请点此查看更多更全内容