您的当前位置:首页正文

2016湖南高考文科数学真题及答案

2021-05-28 来源:客趣旅游网


2016湖南高考文科数学真题及答案

注意事项:

1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.

第Ⅰ卷

选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合A{1,3,5,7},B{x|2x5},则AIB( )。 (A){1,3}(B){3,5}(C){5,7}(D){1,7} 【参考答案】B

5选B。 【答案解析】集合A与集合B公共元素有3,5,故AB3,【试题点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺

班中均有涉及。

(2)设(12i)(ai)的实部与虚部相等,其中a为实数,则a=( )。 (A)-3(B)-2(C)2(D)3 【参考答案】A

【答案解析】设(12i)(ai)a2(12a)i,由已知,得a212a,解得a3,选A. 【试题点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是 (A)

1115(B)(C)(D) 3236【参考答案】A

【答案解析】将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有2种,故概率为

1,选A. 3【试题点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(4)△ABC的内角A、B、C的对边分别为a、b、c.已知a(A)2(B)3(C)2(D)3 【参考答案】D

【答案解析】由余弦定理得5b42b225,c2,cosA2,则b=( )。 321,解得b3(b舍去),选D. 33【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及。

1

(5)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率

4为( )。

1123(A)(B)(C)(D)

3234【参考答案】B

【答案解析】如图,由题意得在椭圆中,OFc,OBb,OD112bb,在RtOFB中,421|OF||OB||BF||OD|,且a2b2c2,代入解得a24c2,所以椭圆得离心率得:e,故选B.

2【试题点评】本题在高考数学(理)提高班讲座 第十章《直线与圆》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

π1

(6)若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为( )。

64ππππ

(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x–) (D)y=2sin(2x–)

4343【参考答案】D

【答案解析】函数y2sin(2x)的周期为,将函数y2sin(2x)的图像向右平移单位,所得函数为y2sin[2(x))]2sin(2x),故选D.

【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及。

(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π

,则它的表面积是( )。 3

661个周期即个44463

(A)17π (B)18π (C)20π (D)28π 【参考答案】A

14728(r3)部分的球,所以体积应为,所以

838371可得r2,则此几何体的变面积应为个球面,再加上3个圆,所以表面积为

842712(4r)3(r)172,故选A。

84【答案解析】由三视图可知其对应体应为一个切去了

【试题点评】本题在高考数学(理)提高班讲座 第十章《直线与圆》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及

(8)若a>b>0,0(A)logaccb

【参考答案】B

logac【答案解析】对于选项A:

1gc1gc,logbc,而ab0,所以lgalgb,Q0c11gc0,lgalgb1ga1gb,logbc,而lgclgclgb的正负,所以它们的大小不能确定;对于选项B:logca但不能确定lga、lgalgb,两边同乘以一个负数

1c改变不等号方向所以选项B正确;对于选项C:利用yx在第一象lgc限内是增函数即可得到acbc,所以C错误;对于选项D:利用ycx在R上为减函数易得为错误.所以本题选B.

【试题点评】本题在高考数学(理)提高班讲座 第二章《函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2|x|

(9)函数y=2x–e在[–2,2]的图像大致为( )。

(A)(B)

(C)

【参考答案】D 【答案解析】

(D)

函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于y轴对称,因为f(2)8e,08e1,所

22x以排除A,B选项;当x0,2时,y4xe有一零点,设为x0,当x(0,x0)时,f(x)为减函数,

当x(x0,2)时,f(x)为增函数.故选D

【试题点评】本题在高考数学(理)提高班讲座 第二章《函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(10)执行右面的程序框图,如果输入的x0,y1,n=1,则输出x,y的值满足( )。

(A)y2x (B)y3x (C)y4x (D)y5x 【参考答案】C

【答案解析】第一次循环:x0,y1,n2,第二次循环:x1,y2,n3,第三次循环:233x,y6,n3,此时满足条件x2y236,循环结束,x,y6,满足y4x.故选C

22【试题点评】本题在高考数学(理)提高班讲座 第十三章《算法与统计》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(11)平面过正文体ABCD—A1B1C1D1的顶点A//平面CB1D1,I平面ABCDm,

I平面ABB1A1n,则m,n所成角的正弦值为( )。

(A)1323(B)(C)(D)

3223【参考答案】A

【答案解析】如图所示CB1D1∴若平面平面

∵α∥平面CB1D1,∴若设平面CB1D1平面ABCDm1,则m1∥m

又∵平面ABCD∥平面A1C1B1D1,结合平面B1D1C平面AC11B1D1B1D1 ∴B1D1∥m1,故B1D1∥m1 同理可得:CD1∥n

故m、n的所成角的大小与B1D1、CD1所成角的大小相等,即CD1B1的大小. 而B1CB1D1CD1(均为面对交线),因此CD1B13,即sinCD1B13. 2故选A.

【试题点评】本题在高考数学(理)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(12)若函数f(x)x-sin2xasinx在,单调递增,则a的取值范围是( )。 (A)1,1(B)1,(C),(D)1,

3333131111【参考答案】C

【答案解析】用特殊值法:取a1,fxxsin2xsinx,fx1132cos2xcosx,但322f0110,不具备在,单调递增,排除A,B,D.故选C.

33【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及。

第II卷

本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.

二、填空题:本大题共3小题,每小题5分

(13)设向量a=(x,x+1),b=(1,2),且a b,则x=___________. 【参考答案】rr2【答案解析】由题意,ab0,x2(x1)0,x.

3【试题点评】本题在高考数学(理)提高班讲座 第十五章《常用逻辑语》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

(14)已知θ是第四象限角,且sin(θ+【参考答案】

2 3π3π)=,则tan(θ–)=___________. 4543 4【答案解析】由题意,

433cos(),tan()tan()tan().tan()

454424444【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及。

(15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若【参考答案】4

,则圆C的面积为___________.

【答案解析】圆C:xy2ay20,即C:x(ya)a2,圆心为C(0,a),由|AB|23,C到直线yx2a的距离为222222|0a2a|232|0a2a|2,所以由()()a22得a22,所以圆的面222积为(a2)4.

【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日

冲刺班中均有涉及。

(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。学.科网该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为___________元。 【参考答案】216000 【答案解析】如图

将z2100x900y变形,得y7z77zx,平行直线yx,当直线yx经过点M时,

339003900z取得最大值.

解方程组10x3y900,得M的坐标(60,100).

5x3y600所以当x60,y100时,zmax210060900100216000

【试题点评】本题在高考数学(理)提高班讲座第五章《函数图像的画法及应用》中有详细讲解,在寒假

特训班、百日冲刺班中均有涉及。

三.解答题:解答应写出文字说明,证明过程或演算步骤.

17.(本题满分12分)

已知an是公差为3的等差数列,数列bn满足b1=1,b2=,anbn1bn1nbn,. (I)求an的通项公式; (II)求bn的前n项和. 【参考答案】(I)3n1;(II)【答案解析】

1331(1n) 23Qanbn1bn1nbna1b2b2b1a12an3n1Q3nbn1nbn1bn1bn331sn(1n)23

【试题点评】本题在高考数学(理)提高班讲座 第六章《数列》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

18.(本题满分12分)

如图,在已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点E,连接PE并延长交AB于点G.

(I)证明G是AB的中点;

(II)在答题卡第(18)题图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

【参考答案】(I)见解析;(II)

1 3【答案解析】(I)由题意得D为正△ABC中心, ∴DP⊥面ABC ∴PD⊥AB ∵DE⊥面PAB ∴DE⊥AB

因此:AB⊥面PDG ∴AB⊥DG

∴G为AB中点

(2)作法:在面PAB中过E作EF∥PB,交PA于F ∵PA⊥PB,PB⊥PC ∴PB⊥面PAC ∵PB∥EF ∴EF⊥面PAC

1VPDEF.DE.S3111.DE.PF.EF△PEF323

【试题点评】本题在高考数学(理)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百

日冲刺班中均有涉及。 (19)(本小题满分12分)

某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数. (I)若n=19,求y与x的函数解析式;

(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;

(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

3800,0x19;(2)19;(3)购买20个更合理. 【参考答案】(1)y500x5700,x19【答案解析】

()由题意得:120019(0<x<19)3800(0<x<19)y(x>19)500x5700(x>19)20019(x9)500(2)由柱形图可得:P(n≤18)=0.06+0.16+0.24=0.46P(n≤19)=0.46+0.24=0.7∴n最小值为19(3)购买19个的费用:S1100200193002030021039200元平均费用x13920元若为20个:S21002002030010=40300元Qx1<x2购买20个更合理

【试题点评】本题在高考数学(理)提高班讲座 第三章《函数的性质及其应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 (20)(本小题满分12分) 在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2px(p0)于点P,M关于点P

2的对称点为N,连结ON并延长交C于点H. (I)求

OHON;

(II)除H以外,直线MH与C是否有其它公共点?说明理由. 【参考答案】(1)2;(2)除H以外,直线MH与C无其它公共点. 【答案解析】

t2t2()如图:易得1P(,t),N(,t)2p2pp则直线ON为:yxt2t22与y2px联立得H(,2t)pOH||2ON2t2p(2)点M(0,t),H(,2t),则直线MH为y=xtp2t与y22px联立消y得:p222xpxt024t△=0

∴除H以外,直线MH与C无其它公共点.

【试题点评】本题在高考数学(理)提高班讲座 第十二章《圆锥曲线的方程与性质》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 (21)(本小题满分12分) 已知函数(1)讨论(II)若

的单调性;

有两个零点,求a的取值范围.

.

【参考答案】(1)见解析,(2)a≥0 【答案解析】(1)

’①当a≥0时,令f(x)=0,则x=ln(2a)或x=1f(x)增区间为(1,+),减区间为(,1)’②当a<0时,f(x)=0,则x=ln(2a)或x=1f(x)增区间为(,1),[ln(2a),+];减区间为[1,ln(2a)](2)ln(2a)=1,此时f'(x)恒成立此时f(x)R上为增(3)ln(2a)<1,令f'(x)>0,则x<ln(2a)或x>1令f'(x)<0,则ln(2a)<x<1此时f(x)增区间为[,ln(2a)], 则减区间为[ln(2a),1]

综上所述:

e当a<,f(x)增区间为(,1),[ln(2a),+],减区间为[1,ln(2a)]2e当a,f(x)在R上为增2e当-<a<0,f(x)在增区间为[,ln(2a)](1,+),减区间为[ln(2a),1]2

(II)

①当a>0时,此时f(x)一定有两个零点③当a=0时,f(x)只有一个零点综上,要使y=f(x)有两零点应满足a≥0. ②当a<0时,若为第(1)种情况,则f(x)只有一个零点,不符合;若为第(2)种情况,则只能为f[ln(-2a)]=0成立才有可能。【试题点评】本题在高考数学(理)提高班讲座 第四章《函数的值域、最值求法及应用》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 (22)(本小题满分10分)选修4-1:几何证明选讲 如图,△OAB是等腰三角形,∠AOB=120°以⊙O为圆心,OA为半径作圆. (I)证明:直线AB与O相切;

(II)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.

【参考答案】见解析 【答案解析】(1)取AB中点P,连接OP,因为△OAB是等腰三角形,所以OP⊥AB 因为∠AOB=120°,所以∠AOP=∠BOP=60°,在Rt△APO中,OP=OA cos∠AOP=所以直线AB与圆O相切。

(II)设CD的中点为Q,四边形CD外接圆的圆心为,连接C,D,C,D 因为CD,所以QCD,因为CD,所以QCD,所以,,Q三点共线 同理可得,,三点共线,所以Q,,,四点共线 即Q过点,且Q,QCD

【试题点评】本题在高考数学(理)提高班讲座 第十章《直线与圆》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 (23)(本小题满分10分)选修4—4:坐标系与参数方程

1OA 2

在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0)。在以坐标原点为极点,x

轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.

(I)说明C1是哪种曲线,并将C1的方程化为极坐标方程;

(II)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a。 (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=∣x+1∣-∣2x-3∣.

(I)在答题卡第(24)题图中画出y= f(x)的图像; (II)求不等式∣f(x)∣﹥1的解集。

【参考答案】(I)2sin1a0;(II)a1

22xacost2【答案解析】(I)由(t为参数)得x2y1a2(a0)

y1asint所以曲线C1表示以0,1为圆心,半径为a的圆 由x2y1a2得:xy2y1a0

2222因为xy,ysin,所以2sin1a0

22222所以C1的极坐标方程为2sin1a0

2(II)由4cos得4cos

22因为xy,xcos,所以xy4x0

222221a2所以曲线C1与曲线C2的公共弦所在的直线方程为4x2y1a0,即y2x

221a2由0,其中0满足tan02得y2x,所以0,因为a0,所以a1

2【试题点评】本题在高考数学(理)提高班讲座 第八章《三角函数》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。 (24)(本小题满分10分),选修4—5:不等式选讲 已知函数f(x)=∣x+1∣-∣2x-3∣.

(I)在答题卡第(24)题图中画出y= f(x)的图像; (II)求不等式∣f(x)∣﹥1的解集。

【参考答案】,U1,3U5,

13x4,x13【答案解析】:(I)fxx12x33x2,1x

23x4,x2画出yfx的图象如图所示:

(2)当x<1时,|f(x)|=|x4|1,解得x5或x<3,所以x<-13113当1≤x<时,|f(x)|=|3x2|1,解得x1或x<,所以-1≤x<或1<x≤233233当x时,|f(x)|=|x+4|1,解得x5或x<3,所以<x<3或x5221所以不等式|f(x)|1的解集为,1,35,3

【试题点评】本题在高考数学(理)提高班讲座 第三章《函数的性质及其应用》中有详细讲解,在寒假特

训班、百日冲刺班中均有涉及。

因篇幅问题不能全部显示,请点此查看更多更全内容