北师大版六年级数学上册
预 习 案
白家忠 编
二〇一四年八月
一、圆
(一)、圆的认识(一)
1、教材内容: 教材第1—5页
2、预习目标:
(1)、体会圆的特征及圆心和半径的作用,会用圆规画圆。 (2)、能用圆的知识解释生活中的简单现象。
3、预习内容:
(1)、( )叫作直径; ( )叫作半径。圆心用字母( )表示;直径用字母( )表示;半径用字母( )表示。 (2)、一个圆有( )条直径,( )条半径。
(3)、圆心确定圆的( ),半径(或直径)决定圆的( )。
4、预习检测: (1)、 判断题
①、 同一个圆中,半径都相等,直径都相等。 ( ) ②、在连接圆上任意两点的线段中,直径最长。 ( ) ③、画一个直径是4厘米的圆,圆规两脚应叉开4厘米。 ( ) d、两端都在圆上的线段是圆的直径。 ( ) (2)、操作题
①、画一个任意圆,并分别用字母标出圆心、直径和半径。
②、画一个半径是1.5厘米的圆。
(3)、车轮为什么是圆形的?
(二)、圆的认识(二)
1、教材内容: 教材第6—8页 2、预习目标:
(1)、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
(2)、进一步理解轴对称图形的特征,体会圆的对称性。
3、预习内容:
(1)、圆是( )图形,( )是圆的对称轴。圆有( )条对称轴。
(2)、在同一个圆(或等圆)里,直径的长度是半径的( ),或者半径长度是直径的( ),可以用字母表示为( )或( )。
4、预习检测: (1)、 判断题
①、直径的长度总是半径的2倍。 ( ) ②、圆有4条对称轴。 ( ) ③、等腰三角形、等腰梯形都是轴对称图形。 ( ) (2)、填表题
半径/厘米 直径/厘米 1.5 8 6 4.8
(3)、画一个直径是5厘米的圆,并作出两条互相垂直的对称轴。
(三)、圆的周长
1、教材内容: 教材第11—13页 2、预习目标:
(1)、认识圆的周长,能用滚动、绕线等方法测量圆的周长。 (2)、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义及圆周长的计算方法。能计算圆的周长,能运用圆的周长的知识解决一些简单的实际问题。
3、预习内容:
(1)、圆的周长总是直径的( )多一些。
(2)、( )叫作圆周率,用字母( )表示,计算时通常取( )。
(3)、如果用C表示圆的周长,那么,用字母表示圆的周长是( )或( )。
(4)、半圆的周长C=( )。 4、预习检测: (1)、判断题
①、π=3.14 ( ) ②、半圆的周长等于圆的周长的一半。 ( ) ③、大圆的圆周率等于小圆的圆周率。 ( ) ④、用圆的周长除以该圆的直径,所得的商是π。 ( ) (2)、求各圆的半径
①、C=25.12米 ②、d=12厘米
(3)、求各圆的周长
①、r=5分米 ②、d=3厘米
(四)、圆的面积
1、教材内容: 教材第16—19页 2、预习目标:
(1)、经历圆面积计算公式的推导过程,掌握圆的面积计算公式。 (2)、能运用圆的面积计算公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。 3、预习内容:
(1)、把一个圆进行分割,再拼成一个近似的长方形,拼成的长方形的
长等于( )的一半,宽等于圆的( )。 因为长方形的面积=长(πr)×宽(r),所以,圆的面积S=( )。 (2)、环形的面积S=( )。
4、预习检测: (1)、判断题
①、圆的半径扩大2倍,周长就扩大2倍,面积也扩大2倍。( ) ②、两圆的周长相等,它们的面积也相等。 ( )
c、当半径为2厘米时,这个圆的周长和面积相等。 ( ) (2)、求下列各圆的面积。
①、r=3分米 ②、d=8厘米
③、C=12.56分米
二、百分数的应用
(一)、百分数的应用(一) 1、教材内容:
教材第23—24页 2、预习目标:
(1)、在具体情境中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的认识。
(2)、能计算出实际问题中“增加百分之几”或“减少百分之几”。 3、预习内容:
(1)、( )叫作百分数。 (2)、“增加百分之几”的意思是:( )是( )的百分之几;“减少百分之几”的意思是:( )是( )的百分之几。
(3)、求甲数比乙数多(或少)百分之几,解题方法: (较大数-较小数)÷“比”后量(“1”) 4、预习检测: (1)、填空题
①、50比40多( )%,40比50少( )%。 ②、把10克白糖溶于95克水中,糖占糖水的( )%。
③、六年级(1)班同学共植树50棵,有2棵没有成活,成活率是 ( )%。
(2)、判断题
①、甲数比乙数多10%,乙数就比甲数少10%。 ( ) ②、一种商品打“八五折”出售,也就是把这种商品优惠了15%。( ) ③、在100克水中放入10克盐,盐的重量占盐水重量的10%。 ( ) (3)、某机床厂去年生产机床3200台,今年计划生产3600台,今年计划比去年增产百分之几?
(二)、百分数的应用(二)
1、教材内容: 教材第25—27页 2、预习目标:
(1)、进一步理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
(2)、能解决“比一个数增加百分之几的数”或“比一个数减少百分之几的数”的实际问题。
3、预习内容:
1 (1)、根据“甲数比乙数多”写出等量关系式是( ); 51 根据“甲数比乙数少”写出等量关系式是( )。 5 (2)、几折就是表示( )是( )的( )分之( ),也就是( )%。
() (3)、几成就是( )。如,三成是,也就是( )%。 () (4)、解决问题的条件中有“…比…多(少)百分之几”,找“1”的量,“1”已知括号外用“×”;有“多”的意思,括号内用“+”,有“少”的意思,括号内用“-”。
4、预习检测:
(1)、有一个公园原来的门票是80元,国庆期间打8折,国庆期间每张门票多少元?
(2)、双龙三组去年共收玉米8000千克,今年预计比去年增长三成,今年预计共收玉米多少千克?
(三)、百分数的应用(三) 1、教材内容:
教材28—29页 2、预习目标:
(1)、利用百分数的意义列出方程解决实际问题。
(2)、根据个人实际情况,尝试用算术方法解决稍复杂的百分数问题。 3、预习内容:
(1)、根据“鸡比鸭多25%”写出等量关系式是( ); 根据“鸡比鸭少25%”写出等量关系式是( )。 (2)、解决问题的条件中有“…比…多(少)百分之几”,找“1”的量,“1”未知括号外用“×”;有“多”的意思,括号内用“+”,有“少”的意思,括号内用“-”。 4、预习检测:
(1)、一块小麦地,今年产量是840千克,比去年增产了两成。这块地去年的小麦产量是多少千克?
(2)、6(1)班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数少20%,参加体育兴趣小组的有多少人?
(四)、百分数的应用(四)
1、教材内容: 教材第30—31页 2、预习目标:
利用百分数的有关知识,解决一些与储蓄有关的实际问题。
3、预习内容:
(1)、我们把平时不用的钱存入银行。存入银行的钱叫作( ),取款时银行多付的钱叫作( ),利息与本金的百分率叫作( )。
(2)、利息=( )。 4、预习检测:
(1)、小明要把今年到期的爸爸存入银行的零存整取五年,年利率是4.75%的5000元的利息捐给贫困山区的同学,到期时,小明要捐多少元?
(2)、2011年春节丽华同学把积攒的压岁钱1000元存入银行,定期二年,年利率是3.75%。到期时,丽华能从银行取出本金和利息共多少元?
(3)、张颖同学的妈妈2007年买了12000元5年期凭证式国债,年利率为6.34%,到期后用利息够买一台4500元的电脑吗?
三、图形的变换
(一)、图形的变换
1、教材内容: 教材第35—36页 2、预习目标:
(1)、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,
(2)、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。
3、预习内容:
(1)、由一个图形经过旋转得到另一个图形的,要说清旋转的( )、( )和( )。
(2)、由一个图形经过平移得到另一个图形的,要说清向那个( )平移、平移( )。
4、预习检测:
(1)、 先观察右图,再填空。
①、图1绕点“O”逆时针旋转900到达图( )的位置;
2 ②、图1绕点“O”逆时针旋转1800到达图( )的位置; 3 ③、图1绕点“O”顺时针旋转( 0)到达图4的位置;
O ④、图2绕点“O”顺时针旋转( 0)到达图4的位置; 1 04 ⑤、图2绕点“O”顺时针旋转90到达图( )的位置; 0
⑥、图4绕点“O” 逆时针旋转90到达图( )的位置。
(2)、将图形A绕O点顺时针旋转90°,然后向右平移6格,向下平移2格,得到图B。
A O
(二)、图案设计 1、教材内容: 教材第37—38页
2、预习目标:
(1)、能运用图形的变换在方格纸上设计图案。 (2)、体会平移、旋转和轴对称在设计图案中的作用。 3、预习内容:
(1)、一个图形如果沿着一条直线对折,直线两边的图形能够完全重合,这样的图形叫作( ),折痕所在的直线叫作( )。 (2)、一个轴对称图形的一个点与对应的点到对称轴的距离( )。
4、预习检测: (1)、填表。
图 形 长方形 正方形 等腰 三角形 对称轴数(条)
(2)、 作出下列图形的所有对称轴。
等边 三角形 等腰梯形 半圆 圆
(三)、数学与体育
1、教材内容: 教材第43—44页 2、预习目标:
(1)、了解“从简单的情形开始寻找规律”的解决问题的策略。 (2)、会用列表、画图的方式寻找实际问题中蕴含的简单规律。
3、预习内容:
(1)、单循环比赛场次=总队数×(总队数-1)÷2 (2)、淘汰赛比赛场次=总队数-1.
(3)、两两握手次数=总人数×(总人数-1)÷2 4、预习检测:
(1)、十六人进行五子棋比赛,每两人比赛一局。一共多少局?
(2)、一场体育比赛中,一共有10名运动员。如果每两人握一次手,一共握了几次?
(3)、“冬运会”上,学校有12名同学参加乒乓球比赛,如果每两位同学之间进行一场比赛(单循环赛),一共要比赛多少场?
四、比的认识
(一)、生活中的比
1、教材内容: 教材第48—51页 2、预习目标:
(1)、理解比的意义。
(2)、会读写比,会求比值,理解比与除法、分数的关系。
3、预习内容:
(1)、两个数相除,又叫作这两个数的( )。
(2)、比号前面的数是比的( ),比号后面的数是比的( )。 (3)、比的前项除以后项所得的商叫作比的( )。 (4)、比和除法、分数的联系和区别: 名称 比 除法 分数 前项 联 系 比号 后 项(不能为0) 比值 (不能为0) (不能为0) 区 别 两数间的一种关系 4、预习检测:
(1)、六(1)班有48人,其中有23名女生,男生人数与女生人数的比是( : )。
(2)、一辆汽车4小时行驶240千米,所行的路程与时间的比是多少?比值是多少?
(二)、比的化简
1、教材内容: 教材第52—54页 2、预习目标:
(1)、在实际情境中,体会化简比的必要性,进一步体会比的意义。 (2)、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
3、预习内容:
(1)、( )叫作商不变性质; ( )叫作分数的基本性质。 (2)、( )叫作比的基本性质。 (3)、比值为同一个数的比有( )个,但化简成最简整数比只有一个。
(4)、( )是最简整数比。 4、预习检测: (1)、判断题
①、比的前项和后项同时乘或除以一个相同的数,比值不变。( ) ②、化简比就是求比值。 ( ) ③、圆的周长与直径的比值是π。 ( ) (2)、化成最简整数比,并求比值
①、12:18 ②、25:5 ③、5.6:4.2 ④、
(3)、 大正方形的边长是5㎝,小正方形的边长是4㎝。大、小正方形周长的比是( : ) ;大、小正方形面积的比是 ( : )。
11: 255
(三)、比的应用
1、教材内容: 教材第55—56页 2、预习目标:
运用比的意义解决按照一定的比进行分配的实际问题,进一步体会比的意义。
3、预习内容:
(1)、按比例分配问题的解题方法是:先求出总份数,再用总数量×
部分数=部分数量。 总分数 (2)、三角形的内角和等于( )°。
(3)、已知长方体长、宽、高的比与棱长总和,求长方体的长、宽、高。方法:先用棱长总÷4,求出长、宽、高的( ),再按比例分配。
4、预习检测:
(1)、六(1)班有54名同学,男女生人数的比是5:4,六(10班男、女生各有多少人?
(2)、一个三角形,三个内角度数的比是3:2:1,这个三角形三个内角的度数分别是多少度?
(3)、一个长方体的棱长总和是210厘米,长、宽、高的比是4:2:1,这个长方体的体积是多少立方厘米?
五、统 计
(一)、复式条形统计图
1、教材内容: 教材第59—60页 2、预习目标:
认识复式条形统计图,了解复式条形统计图的特点。 3、预习内容:
(1)、常见的统计图有( )、( )、 ( )。
(2)、( )统计图,很容易看出各种数量的多少。
(3)、条形统计图可以分为( )条形统计图和( )条形统计图。 (4)、复式条形统计图至少有( )条直条,与单式条形统计图相比增加了( )。
4、预习检测:
下图是某公司一车间中三个小组男、女工人数统计图
单位:人140110808014014012010080男女
6040200第一小组第二小组第三小组30①、这是一幅( )统计图。
② 、第一小组男工人数是女工人数的( )倍。 ③ 、第二小组男工人数占第二小组人数的( )%。 ④ 、第一小组女工人数比男工人数少( )% 。
(二)、复式折线统计图
1、教材内容: 教材第61页—63页 2、预习目标:
认识复式折线统计图,了解复式折线统计图的特点。 3、预习内容:
(1)、( )统计图,不但能清楚地看出各种数量的多少,而且能清楚地看出各种数量的增减变化情况。
(2)、折线统计图可以分为( )折线统计图和( )折线统计图。 (3)、复式折线统计图至少有( )条折线,与单式折线统计图相比增加了( )。
因篇幅问题不能全部显示,请点此查看更多更全内容