您的当前位置:首页正文

原核生物蛋白质合成的过程

2020-03-25 来源:客趣旅游网


原核生物蛋白质合成的过程

蛋白质合成的过程

蛋白质生物合成的具体步骤包括:①氨基酸的活化;②活化氨基酸的转运;③活化氨基酸在核蛋白体上的缩合。

(一)氨基酸的活化转运

氨基酸的活化过程及其活化后与相应tRNA的结合过程,都是由氨基酰tRNA合成酶来催化的,反应方程为:tRNA+氨基酸+ATP〖FY(KN〗氨基酰tRNA合成酶〖FY)〗氨基酰-tRNA+AMP+焦磷酸。以氨基酰tRNA形式存在的活化氨基酸,即可投入氨基酸缩合成肽的过程。氨基酰tRNA合成酶存在于胞液中,具有高度特异性。它们既能识别特异的氨基酸,又能辨认携带该种氨基酸的特异tRNA分子。在体内,每种氨基酰tRNA合成酶都能从多种氨基酸中选出与其对应的一种,并选出与此氨基酸相应的特异tRNA。这是保证遗传信息准确翻译的要点之一。

(二)核蛋白体循环

tRNA所携带的氨基酸,是通过“核蛋白体循环”在核蛋白体上缩合成肽,完成翻译过程的。以原核生物中蛋白质合成为例,将核蛋白体循环人为地分为启动、肽链延长和终止三个阶段进行介绍。

1.启动阶段

在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。这一过程需要一些称为启动因子的蛋白质以及GTP 与镁离子的参与。

原核生物中的启动因子有3种,IF 1辅助另外两种启动因子IF 2、IF 3起作用。

启动阶段的具体步骤如下:

(1)30S亚基在IF 3与IF 1的促进下与mRNA的启动部位结合,在IF 2的促进与IF 1辅助下与甲酰蛋氨酰tRNA以及GTP结合,形成30S启动复合体。

30S启动复合体由30S亚基、mRNA、fMet-tRNA fMet 及IF 1、IF 2、IF 3与GTP共同构成。

(2)30S启动复合体一经形成,IF 3即行脱落,50S亚基随之与其结合,形成了大、小亚基,mRNA,fMet-tRNA fMet 及IF 1、IF 2与GTP共同构成的70S启动前复合体。

(3)70S启动前复合体的GTP水解释出GDP与无机磷酸的同时,IF 2和IF 1随之脱落,形成了启动复合体。至此,已为肽链延长作好了准备。

启动复合体由大、小亚基,mRNA与fMet-tRNA fMet 共同构成。

已知核蛋白体上有两个位置,分别称为“给位”与“受位”,启动复合体中mRNA的启动信号相对应的fMet-tRNA fMet亦即处于核蛋白体的给位。

2.肽链延长阶段

这一阶段,根据mRNA上密码子的要求,新的氨基酸不断相应的被特异的tRNA运至核蛋白体受位,形成肽键。同时,核蛋白体从mRNA的5′端向3′端不断移位推进翻译过程。肽链延长阶段需要数种称为延长因子的蛋白质、GTP与某些无机离子的参与。

(1)进位

受位上mRNA密码子相对应的氨基酸tRNA进入受位,生成复合体V。此步骤需要GTP、Mg 2+和称为肽链延长因子EFTu与EFTs的蛋白质因子。

(2)转肽

50S亚基的给位有转肽酶的存在,可催化肽键形成。此时在转肽酶的催化下,将给位上tRNA所携的甲酰蛋氨酰(或肽酰)转移给受位上已特异性进入的氨基酸tRNA,与其所带的氨基酸的氨基结合形成肽键。此酶需要Mg 2+与K 2+存在。

(3)脱落

原在给位上的脱去甲酰蛋氨酰后的tRNA fMet,从复合物上脱落。

(4)移位

核蛋白体向mRNA的3′端挪动相当于一个密码子的距离,使下一个密码子准确定位在受位,同时带有肽链的tRNA由受体移至给位,此步需有肽链延长因子EFG、GTP与Mg 2+ 。以后肽链上每增加一个氨基酸残基,就按①进位(新的氨基酸tRNA进入“受

位”)②转肽(形成新的肽键)③脱落(转肽后“给位”上的tRNA脱落)④移位(核蛋白体挪动的同时,原处于“受位”带有肽链的tRNA随之转到“给位”)。

3.终止阶段

当多肽链合成已完成,并且“受位”上已出现终止信号(UAA),此后即转入终止阶段。终止阶段包括已合成完毕的肽链被水解释放,以及核蛋白体与tRNA从mRNA上脱落的过程。这一阶段需要一种起终止作用的蛋白质因子——终止因子的参与。

终止因子使大亚基“给位”的转肽酶不起转肽作用,而起水解作用。在转肽酶的作用下,“给位”上tRNA所携带的多肽链与tRNA之间的酯键被水解,并从核蛋白体及tRNA上释出。

从mRNA上脱落的核蛋白体,分解为大小两个亚基,重新进入核蛋白体循环。核蛋白体的解体需要IF 3的参与。

原核生物的蛋白质生物合成

氨基酸在核糖体上缩合成多肽链是通过核糖体循环而实现的。此循环可分为肽链合成的起始(intiation),肽链的延伸(elongation)和肽链合成的终止三个主要过程。原核细胞的蛋白质合成过程以E.coli细胞为例。

1.肽链合成的起始

1.三元复合物的形成。核糖体30S小亚基附着于mRNA的起始信号部位,该结合反应是由起始因子3(IF3)介导的,另外有Mg2+的参与。故形成IF3-30S亚基-mRNA三元

复合物。

2.30S前起始复合物的形成。在起始因子2(IF2)的作用下,甲酰蛋氨酸-起始型tRNA(fMet-tRNA Met)与mRNA分子中的起始密码子(AUG或GUG)相结合,即密码子与反密码子相互反应。同时IF3从三元复合物脱落,形成30S前起始复合物,即IF2-30S亚基-mRNA-fMet-tRNAMef复合物。此步亦需要fGTP和Mg2+参与。

3.70S起始复合物形成。50S亚基与上述的30S前起始复合物结合,同时IF2脱落,形成70S起始复合物,即30S亚基-mRNA-50S亚基-fMer-tRNA Met复合物。此时fMet-tRNA Met 占据着50S亚基的肽酰位(peptidyl site,简称为P位或给位),而50S的氨基酰位(aminoacyl site,简称为A位或受位)暂为空位。原核细胞蛋白质合成的起始过程氨基酸活化(fMet-tRNAMet形成)

2.肽链合成的延长

这一过程包括进位、肽键形成、脱落和移位等四个步骤。肽链合成的延长需两种延长因子(Elongationfactor,简写为EF),分别称为EF-T和EF-G.此外尚需GTP供能加速翻译过程。

1.进位即新的氨基酰-tRNA进入50S大亚基A位,并与mRNA分子上相应的密码子结合.在70S起始复合物的基础上,原来结合在mRNA上的fMet-tRNAMet占据着50S亚基的P位点(当延长步骤循环进行二次以上时,在P位点则为肽酰-tRNA)新进入的氨基酰-tRNA 则结合到大亚基的A位点,并与mRNA上起始密码子随后的第二个密码子结合。此步需GTP、EF-T及Mg2+的参与。

2.肽键形成在大亚基上肽酰转移酶(见第四章)的催化下,将P位点上的tRNA所携带的甲酰蛋氨酰(或肽酰基)转移给A位上新进入的氨基酰-tRNA的氨基酸上,即由P位上的氨基

酸(或肽的3'端氨基酸)提供α-COOH基,与A位上的氨基酸的α-NH2基形成肽链。此后,在P位点上的tRNA成为无负载的tRNA,而A位上的tRNA负载的是二肽酰基或多肽酰基。此步需Mg2+及K+的存在。

3.脱落即50S亚基P位上无负载的tRNA(如tRNAMet)脱落。

4.移位指在EF-G和GTP的作用下,核糖体沿mRNA链(5'→3')作相对移动。每次移动相当于一个密码子的距离,使得下一个密码子能准确的定位于A位点处。与此同时,原来处于A位点上的二肽酰tRNA转移到P位点上,空出A位点。随后再依次按上述的进位、肽键形成和脱落步骤进行下一循环,即第三个氨基酰-tRNA进入A位点,然后在肽酰转移酶催化下,P位上的二肽酰tRNA又将此二肽基转移给第三个氨基酰-tRNA,形成三肽酰tRNA。同时,卸下二肽酰的tRNA又迅速从核糖体脱落。像这样继续下去,延长过程每重复一次,肽链就延伸一个氨基酸残基。多次重复,就使肽链不断地延长,直到增长到必要的长度。通过实验已经证明,mRNA上的信息的阅读是从多核苷酸链的5'端向3'端进行的,而肽链的延伸是从N端开始的。?

3.肽链合成的终止,需终止因子或释放因子(releasing factor简写为RF)参与。在E.coli中已分离出三种RF:RF1(MW36000),RF2(MW38000和RF3(MW46000)。其中,只有RF3与GTP(或GDP)能结合。它们均具有识别mRNA链上终止密码子的作用,使肽链释放,核糖体解聚。

1.多肽链的合成已经完毕,这时,虽然多肽链仍然附着在核蛋白体及tRNA上,但mRNA 上肽链合成终止密码子UAA(亦可以是UAG或UGA)已在核蛋白体的A位点上出现。终止因子用以识别这些密码子,并在A位点上与终止密码子相结合,从而阻止肽链的继续延伸。RF3的作用还不能肯定,可能具有加强RF1和RF2的终止作用。RF1和RF2对终止密码子的识别具有一定特异性,RF1可识别UAA和UAG,RF2识别UAA和UGA。RF与EF在核糖体上的结合部位是同一处,它们重叠的结合部位与防止了EF与F同时结合于核糖体上,而扰乱正常功能。

2.终止因子可能还可以使核蛋白体P位点上的肽酰转移酶发生变构,酶的活性从转肽作用改变为水解作用,从而使tRNA所携带的多肽链与tRNA之间的酯键被水解切断,多肽链从核蛋白体及tRNA释放出来。

最后,核蛋白体与mRNA分离;同时,在核蛋白体P位上的tRNA和A位上的RF亦行脱落。与mRNA分离的核蛋白体又分离为大小两个亚基,可重新投入另一条肽链的合成过程。核蛋白体分离为大小两个亚基的反应需要起始因子(IF3)的参与。必须指出,上述只是单个核蛋白体的循环,即单个核蛋白体的翻译过程。采用温和的条件小心地从细胞中分离核蛋白体时,可以得到3-4个甚至上百个成串的核蛋白体。称为多核蛋白体,即在一条mRNA 链上同一时间内结合着许多个核蛋白体,两个核蛋白体之间有一定的长度间隔,是裸露的mRNA链段,所以多核蛋白体可以在一条mRNA链上同时合成几条多肽链,这就大提高了翻译的效率。在开始合成蛋白质时,一个核蛋白体先附着在mRNA链的起始部位,再沿着mRNA链由5'端向3'端移动,根据mRNA链的信息,有次序的接受携带基酰的各种tRNA,并合成多种肽链。当这一核蛋白体移动到足够远的位置时,另一核蛋白体又可附着此mRNA 的起始部位,并开始合成另一条同样的多肽链。每当一个核蛋白体又可到此mRNA的终止密码子时,多肽链即合成完毕,并从核蛋白体及tRNA上释出。同时,此核蛋白体随之从mRNA链上脱落分离为两个亚基,而脱落下来的大小亚基又可

重新投入核蛋白体循环的翻译过程。多核蛋白体中的核蛋白体个数,视其所附着的mRNA大小而定。例如,血红蛋白的多肽链约由150个氨基酸残基组成,相应的mRNA的编码区应有450个碱基组成的多核苷酸,长约150nm。网织红细胞核蛋白体的直径为22nm,所以每条mRNA足以容纳好几个核蛋白体。现已证明,网织红细胞多核蛋白体由5-6个核蛋白体串连而成,两个核蛋白体之

间的间隔约为3nm。肌球蛋白(即肌凝蛋白)的重链由1800个氨基酸残基组成,相应的mRNA链的编码区应当是5400个核苷酸组成的长链,多核蛋白体由60多个核蛋白体串连而成。

因篇幅问题不能全部显示,请点此查看更多更全内容