您的当前位置:首页正文

红外拉曼光谱复习题

2020-02-28 来源:客趣旅游网
红外、拉曼光谱习题

三.问答题

1. 分子的每一个振动自由度是否都能产生一个红外吸收?为什么?

答:(1)产生条件:激发能与分子的振动能级差相匹配,同时有偶极矩的变化。并非所有的分子振动都会产生红外吸收光谱,具有红外吸收活性,只有发生偶极矩的变化时才会产生红外光谱。 (2)产生红外吸收的条件:

1)红外辐射的能量应与振动能级差相匹配。即 E光Ev; 2)分子在振动过程中偶极矩的变化必须不等于零。

故只有那些可以产生瞬间偶极距变化的振动才能产生红外吸收。

2. 如何用红外光谱区别下列各对化合物? a P-CH3-Ph-COOH 和Ph-COOCH3 b 苯酚和环己醇

答:a、在红外谱图中P-CH3-Ph-COOH有如下特征峰:vOH以3000cm-1为中心 有一宽而散的峰。而Ph-COOCH3没有。

b、苯酚有苯环的特征峰:即苯环的骨架振动在1625~1450cm-1之间,有几个 吸收峰,而环己醇没有。

3. 下列振动中哪些不会产生红外吸收峰?

(1)CO的对称伸缩

(2)CH3CN中C—C键的对称伸缩 (3)乙烯中的下列四种振动 H H

H C = C H -H (A) (B) C = C H

H -H H+ H H C = C H+ H+ (C) C = C (D)

H -H+ H -答:(1)0,有红外吸收峰 (2)0,有红外吸收峰

(3)只有D无偶极矩变化,无红外吸收峰

4、下列化合物在红外光谱中哪一段有吸收?各由什么类型振动引起? HO— —CH = O CH3—CO2CH2C≡CH (A) (B) 答:(A)HO— —C-H : vOH 3700~3200cm-1

δOH 1300~1165cm-1 vCH(O) 2820~2720cm-1双峰 vC=O 1740~1720cm-1

苯骨架振动: 1650~1450 cm-1 苯对位取代: 860~800 cm-1

v=CH 3100~3000cm-1

O (B)CH3—COCH2C≡CH :

vC=O 1750~1735cm-1 vC—O—C 1300~1000cm-1 vC≡C 2300~2100cm-1 v≡CH 3300~3200cm-1

vasC—H 2962±10cm-1、2926±5cm-1 vsC—H 2872±10cm-1、2853±10cm-1 δasC—H 1450±20cm-1、1465±20cm-1 δsC—H 1380~1370cm-1

5、红外光谱(图10-28)表示分子式为C8H9O2N的一种化合物,其结构与下列结构式哪一个符合?

NHCOCH3 OH NH2 CO2CH3 COCH2 OCH3 (A) (B) (C) NHCH3 CO2H CH2NH2 CO2H (D) (E)

答:(A)结构含—OH,而图中无vOH峰,排除

O (C)结构中含—CNH2,伯酰胺,而图中无1650、1640cm-1的肩峰,排除。 (D)与(E)结构中有-COOH,而图中无3000cm-1大坡峰,排除。 (B)图中3600cm-1,3300cm-1为vAr—N 1680cm-1,为vC=O

1600~1400cm-1为苯骨架振动 1300~1000cm-1表示有C-O-C 所以应为(B)。

6、芳香化合物C7H8O,红外吸收峰为3380、3040、2940、1460、1010、690和740cm-1,试推导结构并确定各峰归属。

解:Ω= 7 + 1 – 8/2 = 4 3380cm-1表明有-OH 3040cm-1表明为不饱和H

690与740cm-1表明苯单取代 得

3380cm-1为vOH ; 2940cm-1为CH2的vC-H ; 3040cm-1为v=C-H ; 1460cm-1为苯骨架振动; 1010cm-1,为vC-O ;

690与740cm-1为苯单取代δC-H

CH2OH 7、化合物C4H5N,红外吸收峰:3080, 2960, 2260, 1647, 990和935cm-1,其中1865为弱带,推导结构。

解:Ω= 4 + 1 + (15) = 3 2 CH2 = CHCH2C≡N

3080cm-1为v=C-H ;

2960cm-1、2260cm-1为vC-H ; 1647 cm-1为vC≡N ; 1418cm-1为δC-H ;

990cm-1和935cm-1为烯烃—取代δ=C-H

7.一个化合物的结构不是A就是B,其部分光谱图如下,试确定其结构。

(A) (B)

答:由图可得,在2300cm-1左右的峰为C≡N产生的。而图在1700cm-1左右也没有羰基的振动峰。故可排除(B)而为(A)

8.下图是分子式为C8H8O化合物的红外光谱图,bp=202℃,试推测其结构。

答:其结构为

9.请根据下面的红外光谱图试推测化合物C7H5NO3(mp106℃)的结构式。

答:其结构为

10.分子式为C8H16的未知物,其红外光谱如图,试推测结构。

答:其结构为

11. 红外光区的划分?

答:红外光按波长不同划分为三个区域:近红外区域(1-2.5微米)、中红外区域(2.5-25微米)、远红外区(25-1000微米)。

12.振动光谱有哪两种类型?多原子分子的价键或基团的振动有哪些类型?同一种基团哪种振动的频率较高?哪种振动的频率较低? 答:(1)振动光谱有红外吸收光谱和激光拉曼光谱两种类型。

(2)价键或基团的振动有伸缩振动和弯曲振动。其中伸缩振动分为对称伸缩振动和非对称伸缩振动;弯曲振动则分为面内弯曲振动(剪式振动、面内摇摆振动)和面外弯曲振动(扭曲振动、面外摇摆振动)。

1)伸缩振动:指键合原子沿键轴方向振动,这是键的长度因原子的伸缩运动发生变化。

2)弯曲振动:指原子离开键轴振动,而产生键角大小的变化。

(3)伸缩振动频率较高,弯曲振动频率较低。(键长的改变比键角的改变需要更大的能量)非对称伸缩振动的频率高于对称伸缩振动。

13. 说明红外光谱产生的机理与条件?

答:(1)产生机理:当用红外光波长范围的光源照射物质时,物质因受光的作用,引起分子或原子基团的振动,若振动频率恰与红外光波段的某一频率相等时就引起共振吸收,使光的透射强度减弱,使通过试样的红外光在一些波长范围内变弱,在另一些范围内则较强,用光波波长(或波数)对光的透过率作图,便可得到红外光谱

(2)产生条件:

1)辐射应具有能满足物质产生振动-转动跃迁所需的能量,即振动的频率与红外光谱谱段的某频率相等。

2)辐射与物质间有相互偶合作用,即振动中要有偶极矩变化

14.红外光谱图的表示法?

答:红外吸收光谱图:不同频率IR光辐射于物质上,导致不同透射比,以纵座标为透过率,横座标为频率,形成该物质透过率随频率的变化曲线,即红外吸收光谱图。横坐标:波数cm-1或者波长μm ,纵坐标:透过率%或者吸光度。

15. 红外光谱图的四大特征(定性参数)是什么?如何进行基团的定性分析?如何进行物相的定性分析?

答:(1)红外光谱图的四大特征(定性参数)是:谱带的数目、谱带的位置、谱带的强度、谱带的形状。

(2)进行基团的定性分析时,首先,观察特征频率区,根据基团的伸缩振动来判断官能团。

(3)进行物相的定性分析: 1)对于已知物:

a、观察特征频率区,判断官能团,以确定所属化合物的类型 b、观察指纹频率区,进一步确定基团的结合方式

c、对照标准谱图进行比对,若被测物质的与已知物的谱图峰位置和相对强度完全一致,可确认为一种物质。 2)对于未知物:

A、做好准备工作。了解试样的来源,纯度、熔点、沸点点各种信息,如果是混合物,尽量用各种化学、物理的方法分离 B、按照鉴定已知化合物的方法进行

16. 何谓拉曼效应?说明拉曼光谱产生的机理与条件?

答:(1)光子与试样分子发生非弹性碰撞,也就是说在光子与分子相互作用中有能量的交换,产生了频率的变化,且方向改变叫拉曼效应。

(2)产生的机理:由于光子与试样分子发生非弹性碰撞,使得分子的极化率发生变化,最终使散射光频率和入射光频率有差异。 17.请叙述CS2的拉曼和红外活性的振动模式?

答:CS2对称伸缩振动时只有拉曼活性,反对称伸缩振动和弯曲振动时只有红外活性。

18.比较拉曼光谱与红外光谱。

答:(1)相同点:两光谱都属于分子振动光谱 (2)不同点:

1)两光谱的光源不同:拉曼光谱用单色光很强的激光辐射,频率在可见光范围;红外光谱用的是红外光辐射源,波长大于1000nm的多色光

2)产生机理不同:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,红外光谱是分子对红外光的吸收,强度由分子偶极矩决定,其适用于研究不同原子的极性键的振动。

3)光谱范围不同:红外光谱的范围是4000-400cm-1,拉曼光谱的范围是4000-40cm-1.拉曼光谱的范围较红外光谱范围宽。 4)制样、操作的不同:

a、在拉曼光谱分析中水可以作溶剂,但是红外光谱分析中水不能作为溶剂。 b、拉曼光谱分析中样品可盛于玻璃瓶,毛细管等容器中直接测定,但红外光谱分析中不能用玻璃容器测定。

c、拉曼光谱分析中固体样品可直接测定,但红外光谱分析中固体样品需要研磨制成KBr压片。

19. 红外与拉曼活性判断规律?指出下列分子的振动方式哪些具有红外活性、哪些具有拉曼活性。为什么? (1)O2 、H2

(2)H2O的对称伸缩振动、反对称伸缩振动和弯曲振动。

答:(一)红外与拉曼活性判断规律:产生偶极矩变化有红外活性,反之没有。分子极化率变化有拉曼活性,反之没有,凡有对称中心的分子,其分子振动仅对红外和拉曼之一有活性;凡无对称中心的分子,大多数分子振动对红外和拉曼都是有活性的;少数分子的振动即红外非活性又拉曼非活性。

(二)(1) O2 、H2都有两个原子,且为线性分子,所以其振动形式有3n-5=3*2-5=1中,即对称伸缩振动,它们分子的振动是拉曼活性,红外非活性,因为它们是对称分子,其振动中并没有偶极矩的变化,有极化率的变化。 (2)H2O分子中有3个原子,且为非线性分子,所以其振动形式有3n-6=3*3-6=3种,即对称伸缩振动、反对称伸缩振动和弯曲振动三种振动都对红外和拉曼都具有活性,因为水分子为无对称中心的分子,其振动同时使偶极矩和极化率产生变化。

20、比较红外与拉曼光谱分析的特点。什么样的分子的振动具有红外或拉曼活性?

答:拉曼光谱是分子对激光的散射,强度由分子极化率决定,其适用于研究同原子的非极性键振动,与红外光谱分析相比,拉曼光谱的特点: 1)光谱范围较红外光谱宽,为40-4000cm-1; 2)水可以作溶剂;

3)样品可盛于玻璃瓶,毛细管等容器中直接测定; 4)固体样品可直接测定;

5)激光方向性强,光束发散小(1-2μ)可测定一定深度的微区样品;如测包裹体中的物质;

6)合频、倍频谐波少甚至无;图谱简单。

21、何为有机基团的IR特征吸收峰?影响红外吸收峰发生移动的因素有哪些? 答:(1)总结大量红外光谱资料后,发现具有同一类型化学键或官能团的不同化合物,其红外吸收频率总是出现在一定的波数范围内,我们把这种能代表某基团,并有较高强度的吸收峰,称为该基团的特征吸收峰。

(2)影响红外吸收峰发生移动的因素可分为两类:一是内部结构因素,二是外部因素。 1)内部因素:

① 电子效应:A.成键轨道类型; B.诱导效应; C.诱导效应; ② 空间效应:A.场效应; B.空间障碍; C.跨环效应; D.环张力; ③ 氢键效应; ④ 互变异构; ⑤ 振动偶合效应; ⑥ 样品的物理状态的影响. 2)外部因素:

① 溶剂影响:极性基团的伸缩频率常常随溶剂的极性增大而降低; ② 仪器的色散元件:A.棱镜:分辨率低; B:光栅:分辨率高。

22、请叙述碳纳米管拉曼光谱中三个不同拉曼位移的物理意义。

碳纳米管研究

3.02.5Intensity (cnt/sec)2.03 1.51.01 2 0.50.0500-1)Raman Shift (cm1 0001 5002 000 答:特征峰1是碳纳米管的直径,特征峰2是D带——缺陷信息,特征峰3是切向伸缩模式——电子特性。

23、解释名词:

(1)拉曼散射与瑞利散射 (2)Stokes线与 anti-Stokes线 (3)拉曼位移 (4)拉曼光谱的表面增强效应(SERS) 答:(1)单色光照射透光的样品,大部分的光被透过,小部分被散射。散射分 两类:

1)拉曼散射(RamanScattering):光子与样品分子发生非弹性碰撞,不仅光子方向改变且有能量交换;

2)瑞利散射(RayleighScattering):光子与样品分子发生弹性碰撞,无能量交换,仅改变方向;

(2)STOKES线:光子将部分能量给样品分子,散射光的能量减少,在低频处测得的散射光线;

ANTI-STOKES线:光子从样品中获得能量,散射光的能量增大,在高频得测得的散射光线。

(3)能量变化所引起的散射光频率变化称为拉曼位移。

(4)SERS效应是在激发区域内,由于样品表面或近表面的电磁场的增强导致的拉曼散射信号极大的增强

因篇幅问题不能全部显示,请点此查看更多更全内容