跟踪对象来运行。现在,这两个途径首次在传感器上结合在一起,称之为“磁性微机电系统”(m-MEMS)。HZDR华人科学家葛进解释说:“我们的传感器处理不同区域中非接触和触觉相互作用的电信号”,可以实时区分刺激源,并隐藏其他来源的影响。为制造这种“电子皮肤”传感器,研究人员进行了不寻常的设计:他们首先在晶圆聚合物膜上连接了一个巨磁电阻的磁传感器,该膜封闭了恰好位于第二硅基聚合物层中间的孔,在这个圆形凹槽中插入了一个永磁铁。马卡洛夫说,这种结构能让传感器保持极高灵活性,即使在弯曲条件下,也可2019第4期(总第155期)
以正常工作。实验表明,传感器可以有针对性地控制物理和虚拟物体,研究人员将虚拟按钮投射到一块装有永磁体的玻璃板上,可以显示真实条件,例如室温、亮度或操控。通过与永磁体的相互作用,能够选择期望的虚拟功能。研究人员说,以前需要多次交互的一项操作可能缩减为一次。卡滕布伦纳称:“这听起来似乎是很小的进步,但从长远来看,可以在此基础上建立更好的人机界面。”例如,除了虚拟现实外,“电子皮肤”也可以在无菌环境中使用。外科医生可以使用传感器来操作医疗设备,而在治疗过程中无需接触,这将降低污染的风险。纳米光子学芯片日本电信电话株式会社(NTT)在处理器中引入光网络技术,正在开发高性能、低耗电的光电融合型信息处理芯片。第一步已开发出集成纳米光子学技术的芯片,实现了超小型光电变换元件。其特点是使用方便,可在芯片上高密度集成光元件,比OEO转换元件少两个数量级。芯片应用于异构计算系统,节能、高通量数据处理以及超低延迟检测、模式匹配处理等。NTT今后目标是,让该处理器芯片性能超过目前已接近极限的OMOS半导体芯片。新纳米开关美国和瑞士研究人员开发出一种光学开关,让光能在20亿分之一秒内在芯片间移动,这一速度远超其他类似设备。研究人员称,这款紧凑型开关是首个能在足够低电压下运行的开关,因此可被集成到硅芯片上,并以极低信号损失改变光的方向,-29-
因篇幅问题不能全部显示,请点此查看更多更全内容