您的当前位置:首页正文

七年级数学上册74一元一次方程的应用列一元一次方程解应用题的类型及练习素材青岛版

2024-02-19 来源:客趣旅游网
列一元一次方程解应用题的类型及练习

一、数字问题。

要正确区分“数”与“数字”两个概念,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系。列方程的前提还必须正确地表示多位数的代数式,abc=___________。

1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?

2、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。

二、日历中的方程(掌握日历或卡片中的规律)

日历中的规律:横行相邻两数相差____竖行相邻两数相差___。

1、礼堂第一排有a个座位,后面每一排比前一排多一个座位,则第n排的座位是( ) A n+1 B a+(n+1) C a+n D a+(n-1) 2、如果今天是星期三,那么一年(365天)以后的今天是星期___________ 3、若今天是星期一,问过2010年后是星期____________.

4、将1~7七个自然数分别填入下图锥中的各圆圈内,使三条线段上的三数之和、两圆周上的三数之和都等于12(如图)

5、在日历表中,用一个正方形任意圈出2x2个数,则它们的和一定能被___________整除。 A 3 B 4 C 5 D 6

6、如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?

7、表2是从表1中截取的一部分,则a=_______

表1 表2

10

a 1

1 2 3 4 2 4 6 8 3 6 9 4 8 … …

21

12 …

12 16 … (第四题)

... … … … …

8、将连续的自然数1~1001按如图的方式排列成一个长方形阵列

1 2 3 4 5 6 7 (1)用一个矩形任意圈出3行2列6个数, 8 9 10 11 12 13 14 如果圈出的6个数之和为57,这6个 15 16 17 18 19 20 21 数分别是多少?

22 23 24 25 26 27 28 (2)用一个正方形框出16个数,要使 11988;○22080 …… …… 这16个数之和分别等于○995 996 997 998 999 1000 1001 三、等积变形问题。

此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。“等积变形”是以形状改变而体积不变为前提。常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。

1、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体

盒子,容积是45000cm.求原来正方形铁皮的边长。

32、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,

应截圆钢多长?

3、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。求锻造后的圆钢的长。

4、用长7.2m的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m。求窗的高和宽。

(不考虑木料加工时损耗)

2

5、鱼儿离不开水,用一个底面半径为20厘米,高为45厘米的圆柱形的塑料桶给一个长方

形的玻璃养鱼缸倒水,养鱼缸的长为120厘米、宽为40厘米、高为1米,将满满一桶水倒下去,鱼缸里的水会升高多少?

6、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10

厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。

四、利润率问题。

利润

其数量关系是:利润=售价-进价,利润率 = ×100%,售价=标价×折扣率,注

成本意打几折销售就是按原价的十分之几出售。

1、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?

2、一种商品,甲提出按原价降低10元后卖掉,用售价的10%作积累;乙提出将原价降低20元卖掉,用售价的20%仍做积累,经测算两种积累一样多.则这种商品的原价是多少?

3、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?

4、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?

5、某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25 %,第二件亏损25 %,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算

五、调配问题。

3

从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。这类问题要搞清人数的变化。

1、 某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数

的一半。问需从第一车间调多少人到第二车间?

2、甲乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。

3、 在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人

数为在乙处的人数的2倍,应调往甲、乙两处各多少人?

4、学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。求房间的个数和学生的人数。

5 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?

6、某厂生产一批西装,每2米布可以裁上衣3件,或裁裤子4条,现有花呢240米,为了使上衣和裤子配套,裁上衣和裤子应该各用花呢多少米?

六、行程问题。(行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点)

要掌握行程中的基本关系:路程=速度×时间。

相遇问题(相向而行),这类问题的相等关系是:甲走的路程+乙走的路程=全路程

追及问题(同向而行),这类问题的等量关系是:

① 同时不同地:甲的时间=乙的时间 甲走的路程-乙走的路程=原来甲、乙相距的路程

② 同地不同时;甲的时间=乙的时间-时间差 甲的路程=乙的路程

4

环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和=一圈的路程;同地同向而行的等量关系是两人所走的路程差=一圈的路程。

船(飞机)航行问题:顺水(风)速度=静水(无风)中速度+水(风)流速度;逆水(风)速度=静水(无风)中速度-水(风)流速度。

车上(离)桥问题:

①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长。 ②车离桥指车头离开桥到车尾离开桥的一段路程。所走的路程为一个成长 ③车过桥指车头接触桥到车尾离开桥的一段路程,所走路成为一个车长+桥长

④车在桥上指车尾接触桥到车头离开桥的一段路程,所行路成为桥长-车长

1、A、B两地相距150千米。一辆汽车以每小时50千米的速度从A地出发,另一辆汽车以每小时40千米的速度从B地出发,两车同时出发,相向而行,问经过几小时,两车相距30千米?

2、甲、乙两人练习100米赛跑,甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑1秒,那么甲经过几秒可以追上乙?

3、一架飞机飞行在两个城市之间,顺风要2小时45分,逆风要3小时,已知风速是20千米/小时,则两城市间的距离为多少?

4、一列火车以每分钟1千米的速度通过一座长400米的桥,用了半分钟,则火车本身的长度为多少米?

5、 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求列车的长度。

七、银行储蓄问题。

注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。

本息和=本金+_____=本金+_____×_____×_____=(1+_____×_____)×本金(不考虑利息税)

5

本息和=本金+_____=本金+_____×_____×_____×(1-_____)(考虑利息税) 1、张先生于1998年7月8日买入1998年中国工商银行发行的5年期国库券20000元,若在2003年7月8日可获得利息数为2790元,则这种国库券的年利率是多少?

2、小明的爸爸前年存了年利率为2.25%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买以一只价值576元的CD机,问小明爸爸前年存了多少钱?

3、教育储蓄年利率为1.98%,免征利息税,某企业发行的债券月利率为2.15‰,但要征收20%的利息税,为获取更大回报,投资者应悬着哪一种储蓄呢?某人存入28000元,一年到期后可以多收益多少元?

4、肖青的妈妈前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少?(精确到0.01%)

5、某人将20000元钱分成两部分,按两种不同方式存入银行,其中10000元按活期方式存一年,另10000元按定期存一年,一年后共取回21044元,又已知定期一年存款约利率为0.63%,求活期存款月利率是多少?

6

因篇幅问题不能全部显示,请点此查看更多更全内容