平中的应用
半定量逆转录多聚酶链式反应是近年来常用的一种简捷、快速、特异的定量RNA 测定方法, 通过mRNA 反转录成cDNA , 再进行PCR 扩增, 扩增产物以指数形式增长, 通过测定PCR 产物的数量, 就可以推测各样品中特异mRNA 的相对含量, 即使模板浓度较低也能检测到. 这就为用非常少量的RNA分析提供了可能. 虽然此法只能测定mRNA 的相对含量, 但在比较模型组和对照组样品之间特异mRNA 的表达差异时足以说明问题.利用PCR 技术对生命过程中某种基因表达量变化的分析经历了一个从相对定量到绝对定量的过程, 荧光实时定量PCR 仪的问世, 使定量技术达到了一个新的高度, 实现了PCR 从定性到定量的飞跃, 但是, 由于荧光实时定量PCR仪价格昂贵, 限制了该仪器在研究中的推广使用。事实上, 在许多研究过程中只需评估样品之间某种基因表达水平的相对差异, 半定量RT-PCR技术完全可以满足上述目的的要求。与经典的检测基因的表达方法如Northern 印迹、RNA 酶保护分析等相比, 半定量RT -PCR法以其灵敏度高(比杂交法高1 000~ 10 000 倍)、专一性好、快速简便、且对初始总RNA 量要求不很严格, 不需已知浓度的标准品等优点而得到广泛的应用. 1 半定量RT-PCR 方法的检测步骤 1. 1 提取组织或细胞中的总RNA
总RNA 的纯度和完整性关系到后面的cDNA合成及PCR 扩增, 因此所提的总RNA 要求纯度高,完整性好并达到一定的浓度. 要达到这一要求, 必须从取标本开始就进行无RNA 酶操作, 以防RNA 酶对所提总RNA 的降解, 具体做法为: 所用的器械及器皿必须经200 ℃以上的高温烘烤最少5 h; 所用的耗材及试剂必须用0. 1% 的DEPC 水处理12~ 16 h,这样方可保证所提总RNA 的完整; 在选用试剂时最好选用知名品牌公司的试剂, 以保证总RNA 纯度及提取的产量; 另外所用的组织量最少应在100mg、细胞数最少应在107. 1. 2 总RNA 的纯度和完整性鉴定
总RNA 提取之后, 必须用紫外分光光度计测定其纯度和浓度,A 260?A 280 在1. 8~ 2. 0 之间方可采用; 然后再用1. 5% 左右的琼脂糖凝胶对总RNA 进行电泳, 以鉴定其完整性, 浓度不高, 完整性不好的标本最好不用, 以免影响后面
的实验结果.
1. 3 cDNA 第一链的合成
由总RNA 逆转录成cDNA 时, 所取的各组标本的总RNA 的量必须要一样多, 最好在1ug 以上, 这样才能保证各组标本总RNA 中所需检测的mRNA量的差异.为了使逆转录效益最大, 最好采用含有多个碱基的随机序列引物. 1. 4 PCR 扩增
以逆转录的cDNA 第一链为模板, 以特异性引物扩增所要检测的mRNA. 在PCR 扩增时一定要注意以下两点: ①为了克服不同管间扩增引起的“管效益”, 必须以组成型表达的内参基因如β-actin (或其它的看家基因, 如GA PDH、β-M G 等) 为内标, 在同一管中加入扩增内参基因的引物, 共同扩增所要检测的基因和内参基因, 内参扩增产物的大小最好与目的基因mRNA 扩增产物的大小相差200 bp 以上,这样便于观测结果; ②由于PCR 扩增存在着扩增效率及平台期的问题, 因此必须进行预试验以确定待检测基因与内参基因达到平台期前扩增效率最大的
循环数. 对于PCR 反应存在着这样的关系式: N =N 0 (1+ E) n. 其中N 0为起始浓度, E 为扩增效率, n代表扩增周期,N 为产物最终浓度. 那么log N = nlog (1+ E) + log N 0. 通过预试验, 在不同的周期取样进行密度扫描, 以待检测基因与内标比值的对数分别与扩增周期作图, 如在20~ 30 周期内, 它们的线性关系良好, 说明在30 周期内二者的扩增未到达平台期, 最后确定扩增效率最大的循环数, 这样可有效地避免因引物结合效率不同而引起的误差. 1. 5 结果的分析
根据扩增产物片段的大小配制最适宜浓度的凝胶, 将PCR 扩增产物进行电泳. 待检基因与内参基因的扩增条带应相隔一定的距离(最少200 bp 以上) , 以便于观测结果及密度扫描, 且所选用的Marker 应尽量含有与扩增产物相对应的条带. 电泳条带经密度扫描仪扫描, 得到待测基因与内参基因条带各自的峰面积积分值, 计算各组样品两者的比值. 为了使扩增条带密度扫描的峰面积积分值尽量的准确可靠, 电泳条带一定要清晰, 不能有杂带出现. 有杂带出现的标本最好不用, 若有杂带应重新调整PCR 过程中的退火温度, 直至杂带消失, 这样才能保证扫描结果的专一性及可靠性. 2 半定量RT -PCR技术的关键因素 2. 1 总RNA 和cDNA 的质量
只有在总RNA 未被降解的情况下, 才能保证其中mRNA 的完整性和随后反转录
的cDNA 的质量,从而真实反映基因的表达. 2. 2 总RNA 的定量
在反转录之前, 作为起始模板各个样品中的总RNA 量要一样, cDNA 量和电泳PCR 产物量也要一样, 这样才能保证PCR 扩增产物能真实反映基因表达的实际情况.
2. 3 引物的选择
PCR反应的特异性是由一对上下游引物所决定的, 因此引物的好坏往往是PCR 反应成败的关
键. 引物包括扩增目的基因的引物及扩增内参基因的引物, 引物的设计, 要根据基因的非保守序列设计, 以保证扩增的特异性. 2. 4 PCR 循环数的确定
选择合适的循环数不仅能使扩增产物在琼脂糖凝胶上清晰可见和定量, 也可使扩增反应在到达平台期前的线性范围内进行.在RT-PCR 方法中, 反应的循环数是一个必须分析的参数. PCR 扩增产物的量与循环数之间有一线性关系. 前期的扩增产物量随循环数的递增而成比例增加. 随着DNA 聚合酶活性的下降和溶液中反应底物的消耗, 扩增产物将达到一个平台. 半定量分析的循环数应确定在成比例的线性关系范围内. 表达丰度不同的基因半定量分析的PCR 循环数不同.PCR 扩增反应是酶促反应, 遵循酶促反应定律, 开始的循环内扩增产物呈指数累积, 产物与模板呈线性关系, 半定量RT-PCR 技术正是利用产物与模板的这一线性关系, 通过扩增产物来对比总RNA 中目的基因的表达, 但经过一定的循环后, PCR 产物不再呈指数累积而进入平台期, 在平台期低水平表达的目的RNA 可能会增加到与高水平表达的目的RNA 相同的浓度, 因此, 为避免平台效应的影响, 合适的循环数是PCR 半定量方法的关键因素之 2. 5 最佳Mg2+ 浓度的确定
M g2+ 浓度对PCR 扩增的特异性和产量有显著的影响, 因为它是影响Taq 酶扩增效率的重要因素,除此之外,M g2+ 还可影响引物的退火和解链温度,影响产物的特异性以及引物二聚体的形成等. 浓度范围多在0. 5~ 5 mmo lPL , 但扩增的效率则主要视序列而定. 在一般的PCR 反应中, 各种dNTP 浓度为200 umo lPL 时,M g2+ 浓度为1. 5~ 2. 0 mmolPL 为宜. M g2+ 浓度过高, 反应特异性降低, 出现非特异性扩增, 浓度过低会降低Taq DNA 聚合酶的活性, 使反应产物减少. 实验过程中可分别取1. 0、1. 5、2. 0mmo lPLMg2+ 进行预实
验, PCR 产物经琼脂糖凝胶电泳后, 通过鉴定其亮度和特异性, 来确定最适的M g2+ 浓度.
2. 6 合适内参的选择
设立内参照可以减少因RNA 定量时产生的误差, 也可消除细胞个数的差别所带来的误差. 为避免RNA 抽提、加样、测量、cDNA 合成及PCR 反应过程中的某些系统误差和人为误差, 实验要选用在生物体内稳定表达且在其它生理条件下不受影响或影响很小的持家基因片段作为内参.传统的半定量RT-PCR 技术多以β-act in 作内参, 另外常用的内参照还有GAPDH, 它是一种细胞内代谢酶, 其基因属于保守性强的“管家基因”, 该基因在生物体内普遍存在且稳定表达. β-M G 也是常用的内参, 研究表明18 S rRNA 具有更强的保守性和更普遍而恒定表达
的特性, 因此在很多情况下也常常被用作内参. 不同的生物体其生命过程和生理过程各不相同, 选用何种内参要根据目的基因和实验的具体情况而定. 3 半定量RT-PCR 法的应用
半定量RT-PCR 是目前研究基因转录水平的有效手段, 可用来检测基因表达及其变化状况, 并可进行定量分析, 万平等以微管蛋白基因(Tubulin) 为对照, 利用半定量RT 2PCR 法研究发现小麦锌指蛋白基因(TazF) 属于组成型表达基因. 王维平等以水稻肌动蛋白基因(Actin) 为对照, 利用半定量RT-PCR 研究, 发现水稻RCOI1基因的表达受茉莉酸甲酯(MeJA) 的诱导. 同时半定量RT 2PCR 方法在病原体检测、转基因的安全检测及肿瘤的研究方面也有非常广泛的应用. 4 总结与展望
半定量RT-PCR 法除了要求反转录和PCR条件完全一致外, 相比较样品之间最好同批进行RT -PCR , 对于用凝胶扫描检测PCR 扩增产物来说, 更适宜在同一块凝胶上进行电泳分离. 如果样品数量多, 由于泳道限制, 就不能同时在一块胶上电泳. 这时可采用Life Technologies 公司的定量Marker, 通过计算分析, 得到PCR 扩增产物的含量, 这样就可对同批扩增的样品进行多次重复电泳检测, 以提高定量的准确性和可靠性. 另外采用反转录与PCR分开进行的两步法RT-PCR , 在实验摸索阶段较一步法RT-PCR更为经济和方便, 因为每次提取到的总RNA 立即反转录成cDNA 存放, 可以尽量避免RNA操作中的降解, 而且一次反转录的cDNA 模板可供多次PCR 使用, 不但节约成本还可缩短实验周期,提高实
验成功率.
若靶基因的模板量大大低于内参基因, 若按常规方法同时加入两种基因的引物进行PCR 扩增, 在同一PCR 体系中, 太高浓度的模板会竞争性地形成优势扩增, 从而使另一模板失去指数扩增. 同时, 由于PCR 扩增中“平台期”的影响, 当靶基因可用EB检测出时, 内参基因已快进入“平台期”. 因此可采用PCR 扩增时内参照引物滞后加入的方法, 使内参照与靶基因同时处于指数增长期, 这样就可避免内参的优势扩增. 另外半定量RT - PCR 检测体系必须防止混在RNA 中的基因组DNA 带来的假阳性. 为排除可能的污染, 在实验中可同时设置两个阴性对照,
一是以mRNA 为模板直接进行PCR 反应, 另一组不加任何模板. 若含有基因组DNA , 则会有条带出现.总之, RT-PCR 法是讨论基因转录水平的有效手段, 利用RT 2PCR 法对mRNA 进行半定量分析,最关键的是优化实验条件, 寻求PCR 线性扩增范围, 确定最适M g2+ 浓度和PCR 循环数. 但是要使该法能够较准确地定量, 还有许多要注意的问题, 如在进行目的基因的定量分析过程中尚需考虑目的基因和内对照基因的丰度、大小以及它们的引物长短对扩增反应的影响, 另外就定量分析而言, 要使PCR产物量能够较好地反映起始模板量, 必须对处于指数扩增阶段的产物进行检测, 而它是不能通过EB 染色检测到的, 这是在利用常规PCR 方法分析目的基因表达变化过程中常遇到的难题, 大多数实验室常将定量分析过程中的PCR 扩增循环数提高到30 甚至35 个循环, 但是, 往往导致实验失败, 因此, 寻求一种高灵敏度的检测核酸数量变化的方法是今后需要努力去做的工作.
因篇幅问题不能全部显示,请点此查看更多更全内容