铝合金的焊接
在幕墙工程中,钢结构的焊接经常用到,但铝合金的焊接却很少用到,为什么?铝合金的焊接有什么优缺点?
在幕墙工程中,铝合金龙骨连接一般都是通过角片打钉来连接的。我认为,焊接却很少用到,是因为施工安装的方式及铝合金焊接工艺的原因。
铝合金焊接具体来说,比钢结构焊接麻烦很多。 铝及铝合金的焊接方法 1.铝及铝合金的焊接特点
(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。
根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2.焊接方法
几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。
熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)。 1.为什么叫纯铝?它们是如何分类的?
答:工业纯铝:含铝量≥99.00% 。国产牌号: L1、L2、L3、L4、L5 。国际型号: 1060、1035、1100、1200、1370等国产焊丝牌号:HS301
2.为什么叫铝合金?它们是如何分类的?
答:在铝材中加入镁、硅、锰、铜、锌等合金元素,形成不同的组织和性能,形成不同系列的铝合金材料,如:
〈1〉铝铜合金 ( LY19 2014 2219 2024 )
〈2〉铝锰合金 ( LF21 3003 3005 3105 ) 国产焊丝牌号:HS321
〈3〉铝硅合金 ( LT1 4A11 4043 4047 ) 国产焊丝牌号:HS311
〈4〉铝镁合金 ( LF2--LF16 5005 5052 5182 5356 )国产焊丝牌号: HS331
〈5〉铝镁硅合金( LD2 LD31 6061 6063 6070 )
〈6〉铝铜镁锌合金 ( 7005 7050 7075 7475 )
〈7〉铝铜镁锂合金 ( 8090 )等
3.为什么MIG焊铝要用亚射流过渡?
答:亚射流过渡—在射流过渡的电弧成分中调试出3—5%的短路过渡成分,保证电弧长度较短,电弧不漂移,气体保护和阴极雾化效果好,产生气孔的倾向小,焊缝内在质量高。
4.为什么MIG焊铝的工艺难题较多?
答:MIG焊铝的工艺难题主要有:
〈1〉铝及铝合金的熔点低(纯铝 660℃),表面生成高熔点氧化膜( AL2O3 2050℃),容易造成焊接不熔合。
〈2〉低熔点共晶物和焊接应力,容易产生焊接热裂纹。
〈3〉母材、焊材氧化膜吸附水分,焊缝容易产生气孔。
〈4〉铝的导热性是钢的3倍,焊缝熔池的温度场变化大,控制焊缝成型的难度较大。
〈5〉 焊接变形较大。
5.为什么MIG焊铝要用Φ1.2/Φ1.6焊丝?
答:MIG焊铝时,因焊丝的熔化速度很快,送丝速度高;铝焊丝刚性小,比较软,推丝送进时,细焊丝容易堆丝打弯,影响正常焊接。所以一般使用Φ1.2/Φ1.6铝焊丝。
6.什么叫清洁宽度?
答:TIG交流和MIG直流反接焊铝时,负电极(母材)表面上集中发射电子的光亮微小区域—“阴极雾化区”,此区域为清洁宽度,清理铝表面氧化膜。
我为人人,人人为我
shown65
积分26 帖子14
#3
2009-8-18 08:19
介绍铝及铝合金焊接基础知识
虽然用焊接来连接铝及铝合金产品,仅仅只有五六十年的历史,但是在这短短的几十年时间里,已经发展了完善的铝及铝合金焊接工艺技术。焊接技术的发展使可焊接铝及铝合金材料范围扩大了。现在不仅掌握了热处理强化的高强度硬铝合金焊接时的各种难题,且适用于铝及铝合金的焊接方法增多了。现在除了传统的熔焊、电阻焊、钎焊之外,脉冲氩(氦)弧焊。极性参数部队陈的方波交流钨极亚弧焊、等离子弧焊、真空电子束焊、真空机气保护钎焊以及扩散焊等都可以很容易地将铝及铝合金焊接在一起。在大多数情况下,使用焊接其它材料所用的普通设备和工艺,就可以将铝及铝合金进行焊接,有时也需要特殊的设
备和工艺。
铝的一般特性:
铝及铝合金具有独特的物理化学性能。它的外观呈银灰色,密度小,电阻率小,线胀系数大。由于铝为面心立方结构,无同素异构转变,无“延—脆”转变,因而具有优异的低温韧性,在低温下能保持良好的力学性能。此外,铝及铝合金还具有优异的耐腐蚀性能和较高的比强度(强度/密度),对热和光都有良好的反射率。磨削时无火花和无磁性。
铝及铝合金很容易加工成形,它可用铸造、轧制、冲压、拔丝、施压、拉形和滚轧等各种办法治成各式各样的制品。它也能用锤击、锻打和挤压的方法制成形状各异的制品。铝及铝合金容易机械加工,且加工速度快,这也是大量使用铝零件到重要因素之一。铝的机械性能、电化学性能、化学或油漆涂饰的变化范围也较宽。
纯铝的熔点为660℃。而铝合金随着其含的合金元素的不同,它的熔点在482℃-660℃之间变化。铝及铝合金从常温加热到溶化状态时,没有颜色的变化,这就给怎样判断是否接近熔点变得十分困难。
铝及铝合金的机械性能随其纯度而变化,纯度越高,强度越低,塑性越高。如工业纯铝热轧板的抗拉强度最低值在70—110MPa之间,工业高纯铝的抗拉强度只有50MPa,而铝镁合金的抗拉强度则在170MPa以上。铝及铝合金的另一特点是,随着温度的升高,其抗拉强度降低;温度降低,则抗拉强度就增高,延伸率随之增加。
和钢相比,铝的导热率高,焊接时,就需要高的热量输入。对大型截面焊接时,需要进行预热。当使用电阻焊时,和焊钢件相比,因铝具有高的导电率,所以需要较大的电流和较短的焊接时间以精确地控制焊接参数。由于铝是无磁性的,当用直流电焊接时,电弧不会有吹偏。因此,它可以用作焊接挡板和夹具。
铝及铝合金,暴露在空气中时,会很快形成一种黏着力强且耐热的氧化薄膜。在焊接前,必须仔细清除这层氧化膜,才能在焊接时,基体和填充金属熔合良好;在纤焊时,钎料有很好的流动性。氧化膜可用
溶剂去除,也可在惰性气氛下,由焊接电弧的作用去除,或者用机械的或化学的方法去除。
氧化膜的存在对铝及铝合金也有保护作用的一面。因为它的组织比较致密,与铝的结合力很强,能够阻止铝金属继续氧化,保护金属不受破坏。并且铝的纯度越高,对抗腐蚀越有利。因为杂质的存在,除了影响氧化膜与金属结合力外,还可能导致其它形式的腐蚀。根据氧化膜的这一特点,对于能促进氧化膜的生成,且不与它起作用的介质,如硝酸、蜡酸等,就常以铝作为储存容器,而对薄膜起破坏作用的介质,如盐酸、碱类和食盐等,因能迅速破坏氧化膜,使铝受到腐蚀,是铝的强烈腐蚀剂,因此此类介质的储存就不能用铝作为容器。
虽然在铝及铝合金的焊接过程中会遇到诸多困难因素,但是和其它材料如铜相比,铝及铝合金又具有某些无可比拟的优势。所以在航空、航天、汽车、机械制造、电子、化工、轻工、铁道等方面,铝及铝合金焊接产品都日益获得了广泛的应用,我国地大物博,铝资源非常丰富,并且开发利用的成本较低,铝及铝合金焊接在我国非常有发展前途。
我为人人,人人为我
shown65
积分26 帖子14
#4
2009-8-18 08:21
铝合金焊接的特点
框架铝型材铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软
化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。 2 铝合金的先进焊接工艺
针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。
2. 1 铝合金的搅拌摩擦焊接
搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1 为搅拌摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、框架铝型材复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经。进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。
铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,
加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48 h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。
搅拌摩擦焊铝合金也存在一定的缺点: ①铝合金搅拌摩擦焊接时速度低于熔化焊; ②焊件夹持要求高,焊接过程中对焊件要求加一定的压力,反面要求有垫板;③焊后端头形成一个搅拌头残留的孔洞,一般需要补焊上或机械切除; ④搅拌头适应性差,不同厚度铝合金板材要求不同结构的搅拌头,且搅拌头磨损快; ⑤工艺还不成熟,目前限于结构简单的构件,如平直的结构、圆形结构。搅拌摩擦焊工艺参数简单,主要有搅拌头的旋转速度、搅拌头的移动速度、对焊件的压力及搅拌头的尺寸等。 2.2 铝合金的激光焊接
铝及铝合金激光焊接技术(Laser Welding) 是近十几年来发展起来的一项新技术,与传统焊接工艺相比,它具有功能强、可靠性高、无需真空条件及效率高等特点。其功率密度大、热输入总量低、同等热输入量熔深大、热影响区小、焊接变形小、速度高、易于工业自动化等优点,特别对热处理铝合金有较大的应用优势。可提高加工速度并极大地降低热输入,从而可提高生产效率,改善焊接质量。在焊接高强度大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。
激光焊接铝合金有以下优点: ①能量密度高,热输入低,热变形量小,熔化区和热影响区窄而熔深大; ②冷却速度高而得到微细焊缝组织,接头性能良好; ③与接触焊相比,激光焊不用电极,所以减少了工时和成本; ④不需要电子束焊时的真空气氛,且保护气和压力可选择,被焊工件的形状不受电磁影响,不产生X 射线; ⑤可对密闭透明物体内部金属材料进行焊接; ⑥激光可用光导纤维进行远距离的传输,从而使工艺适应性好,配合计算机和机械手,可实现焊接过程的自动化与精密控制。 现在应用的激光器主要是CO2 和YAG 激光器,CO2 激光器功率大,对于要求大功率的厚板焊
接比较适合。但铝合金表面对CO2 激光束的吸收率比较小,在焊接过程中造成大量的能量损失。YAG激光一般功率比较小,铝合金表面对YAG激光束的吸收率相对CO2激光较大,可用光导纤维传导,适应性强,工艺安排简单等。
在焊接大厚度铝合金时,传统的焊接方法根本不可能单道焊透,而激光深熔焊时形成大深度的匙孔,发生匙孔效应,则可以得到实现。
我为人人,人人为我
shown65
积分26 帖子14
#5
2009-8-18 08:24
铝合金焊接设备
产品特性: CLOOS GLC MC4 是一种集焊接电源 / 送丝机一体的数字化逆变式脉冲 MIG/MAG 焊机,具有体积小、功率大、性能先进、使用方便的特点。GL..
产品内容: 推荐产品 CLOOS全数字化MIG/MAG焊机――GLC283/333 MC4(铜/钛/铝/镀锌板专用焊机) • - 配有焊接专家系统的便携式全数字化脉冲 MIG/MAG 焊机 特点: CLOOS GLC MC4 是一种集焊接电源 / 送丝机一体的数字化逆变式脉冲 MIG/MAG 焊机,具有体积小、功率大、性能先进、使用方便的特点。 GLC MC4 是智能化的焊机,只要按提示输入焊接材料参数,焊机的“大脑”会自动调节焊机输出无飞溅的最合适的焊接规范。 GLC MC4 可以用来焊接钢铁、铝合金、铜合金、镁合金、钛合金、镀锌板等各种金属。 GLC MC4 即使在焊接厚度 1mm 以下的铝合金时也能很容易的得到熔深合适、成型美观的焊缝。 • 同类焊机中功率最大,负载持续率 60% 时额定电流 280-330A ; 峰值电流500A • 内置 100 条各种材料的典型焊接规范
程序 • CLOOS 独有的 IU 熔深控制技术 • 独特的铝合金双脉冲设置(***) • 独特的 MIG 电弧钎焊功能(***) • 无飞溅引弧技术( SPAZ ) • 单旋钮一元化功率输出调节 • 带推力控制的四轮送丝系统 • 标准配置的焊接过程数字编程界面 • MC4/R 数字接口适应与机器人或焊接专机配套 • 标准配置的 RS232/RS485 计算机接口 • 丰富的、可选配的工艺和控制软件 • 可用于手工电弧焊或钨极氩弧焊 标准配置: 1 GLC283/333MC4 焊接电源(内置送丝系统)(水冷系统可选配) 2 气冷 MIG/MAG 焊枪(长度可选)(水冷焊枪可选配) 3 地线 ( 3M ) 4 焊钢送丝组件( 1.2MM ) ( 焊铝送丝组件及规格可选 )
我为人人,人人为我
shown65
积分26 帖子14
#6
2009-8-18 08:29
铝及铝合金的焊接材料 焊接材料
(1)焊丝 铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的要求,对有耐蚀要求的容器,焊接接头的耐蚀性还应达到或接近母材的水平。因而焊丝的选用主要按照下列原则:
1)纯铝焊丝的纯度一般不低于母材;
2)铝合金焊丝的化学成分一般与母材相应或相近;
3)铝合金焊丝中的耐蚀元素(镁、锰、硅等)的含量一般不低于母材;
4)异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝;
5)不要求耐蚀性的高强度铝合金(热处理强化铝合金)可采用异种成分的焊丝,如抗裂性好的铝硅合金焊丝SAlSi一1等(注意强度可能低于母材)。
(2)保护气体 保护气体为氩气、氦气或其混合气。交流加高频TIG焊时,采用大于99.9%纯氩气,直流正极性焊接宜用氦气。MIG焊时,板厚<25 mm时宜用氩气;板厚25 mm~50 mm时氩气中宜添加10%~35%的氦气;板厚50mm-75mm时氩气中宜添加l0%~35%或50%的氦气;当板厚>75 mm时推荐采用添加50%~75%氦气的氩气。氩气应符合GB/T 4842?995《纯氩》的要求。氩气瓶压低于0.5 MPa后压力不足,不能使用。
(3)钨极 氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不易熔化挥发,电极烧损及尖端的污染较少,但电子发射能力较差。在纯钨中加入1%~2%氧化钍的电极为钍钨极,电子发射能力强,允许的电流密度高,电弧燃烧较稳定,但钍元素具有一定的放射性,使用时应采取适当的防护措施。在纯钨中加入1.8%~2.2%的氧化铈(杂质≤0.1%)的电极为铈钨极。铈钨极电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的电极。锆钨极可防止电极污染基体金属,尖端易保持半球形,适用于交流焊接。
(4)焊剂 气焊用焊剂为钾、钠、锂、钙等元素的氯化物和氟化物,可去除氧化膜。
4. 焊前准备
(1)焊前清理 铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污,清除质量直接影响焊接工艺与接头质量,如焊缝气孔产生的倾向和力学性能等。常采用化学清洗和机械清理两种方法。
1)化学清洗 化学清洗效率高,质量稳定,适用于清
理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3 min~7 min(纯铝时间稍长但不超过20 min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1 min~3 min,流动清水冲洗,风干或低温干燥。
2)机械清理 在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15 mm~0.2 mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。另外也可用刮刀、锉刀等清理待焊表面。
工件和焊丝经过清洗和清理后,在存放过程中会重新产生氧化膜,特别是在潮湿环境下,在被酸、碱等蒸气污染的环境中,氧化膜成长得更快。因此,工件和焊丝清洗和清理后到焊接前的存放时间应尽量缩短,在气候潮湿的情况下,一般应在清理后4 h内施焊。清理后如存放时间过长(如超过24 h)应当重新处理。
(2)垫板 铝及铝合金在高温时强度很低,液态铝的流动性能好,在焊接时焊缝金属容易产生下塌现象。为了保证焊透而又不致塌陷,焊接时常采用垫板来托住熔池及附近金属。垫板可采用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。垫板表面开一个圆弧形槽,以保证焊缝反面成型。也可以不加垫板单面焊双面成型,但要求焊接操作熟练或采取对电弧施焊能量严格自动反馈控制等先进工艺措施。
(3)焊前预热 薄、小铝件一般不用预热,厚度10 mm~15 mm时可进行焊前预热,根据不同类型的铝合金预热温度可为100℃~200℃,可用氧一乙炔焰、电炉或喷灯等加热。预热可使焊件减小变形、减少气孔等缺陷。
5.焊后处理
(1)焊后清理 焊后留在焊缝及附近的残存焊剂和焊渣等会破坏铝表面的钝化膜,有时还会腐蚀铝件,应清理干净。形状简单、要求一般的工件可以用热水冲刷或蒸气吹刷等简单方法清理。要求高而形状复杂的
铝件,在热水中用硬毛刷刷洗后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或重铬酸钾溶液中浸洗5 min~10 min,并用硬毛刷洗刷,然后在热水中冲刷洗涤,用烘箱烘干,或用热空气吹干,也可自然干燥。
(2)焊后热处理 铝容器一般焊后不要求热处理。如果所用铝材在容器接触的介质条件下确有明显的应力腐蚀敏感性,需要通过焊后热处理以消除较高的焊接应力,来使容器上的应力降低到产生应力腐蚀开裂的临界应力以下,这时应由容器设计文件提出特别要求,才进行焊后消除应力热处理。如需焊后退火热处理,对于纯铝、5052、5086、5154、5454、5A02、5A03、5A06等,推荐温度为345℃;对于2014、2024、3003、3004、5056、5083、5456、6061、6063、2A12、2A24、3A21等,推荐温度为415℃;对于2017、2A11、6A02等,推荐温度为360℃,根据工件大小与要求,退火温度可正向或负向各调20℃~30℃,保温时间可在0.5 h~2 h之间。
请输入对应的正文内容……
因篇幅问题不能全部显示,请点此查看更多更全内容