您的当前位置:首页正文

常见缺陷及防治措施

2022-03-25 来源:客趣旅游网
CO2半自动焊接常见缺陷及其产生原因

气孔 ①CO2气体不纯或供气不足;②焊时卷入空气;③预热器不起作用;④风大、保护不完全;⑤喷嘴被飞溅物堵塞、不通畅;⑥喷嘴与工件的距离过大;⑦焊接区表面被污染、油、锈、水分未清除;⑧电弧过长、电弧电压过高;⑨焊丝含硅,锰量不足。

咬边 ①电弧太长,弧压过高;②焊接速度过快;③焊接电流太大;④焊丝位置不当,没对中;⑤焊丝摆动不当。

气孔 ①CO2气体不纯或供气不足;②焊时卷入空气;③预热器不起作用;④风大、保护不完全;⑤喷嘴被飞溅物堵塞、不通畅;⑥喷嘴与工件的距离过大;⑦焊接区表面被污染、油、锈、水分未清除;⑧电弧过长、电弧电压过高;⑨焊丝含硅,锰量不足。

咬边 ①电弧太长,弧压过高;②焊接速度过快;③焊接电流太大;④焊丝位置不当,没对中;⑤焊丝摆动不当。

未焊透 ①焊接电流太小,送丝不均匀;②电弧电压过低或过高;③焊接速度过快或过慢(在坡口内);④坡口角度小,间隙过小;⑤焊丝位置不当,对中差。

焊缝成形不良 ①工艺参数不合适;②焊丝位置不当,对中差;③送丝滚轮的中心偏移;④焊丝矫直机构调整不当;⑤导电嘴松动。

梨形裂缝 ①焊接电流太大;②坡口过窄;③电弧电压过低;④焊丝位置不当,对中差。 电弧不稳定 ①导电嘴松动、或已磨损,或直径过大(与焊丝比);②焊丝盘转动不均匀,送丝滚轮的沟槽已经磨损,加压滚轮紧固不良,导丝管阻力大等;③焊接电流过低,电弧电压波动;④焊丝干伸长过大;⑤焊件上有锈、油漆和油污;⑥地线放的位置不当。

飞溅 ①短路过渡时电感量不适当,过大或过小;②焊接电流和电弧电压配合不当;③焊丝和焊件清理不良。未焊透 ①焊接电流太小,送丝不均匀;②电弧电压过低或过高;③焊接速度过快或过慢(在坡口内);④坡口角度小,间隙过小;⑤焊丝位置不当,对中差。

焊缝成形不良 ①工艺参数不合适;②焊丝位置不当,对中差;③送丝滚轮的中心偏移;④焊丝矫直机构调整不当;⑤导电嘴松动。

梨形裂缝 ①焊接电流太大;②坡口过窄;③电弧电压过低;④焊丝位置不当,对中差。 电弧不稳定 ①导电嘴松动、或已磨损,或直径过大(与焊丝比);②焊丝盘转动不均匀,送丝滚轮的沟槽已经磨损,加压滚轮紧固不良,导丝管阻力大等;③焊接电流过低,电弧电压波动;④焊丝干伸长过大;⑤焊件上有锈、油漆和油污;⑥地线放的位置不当。

飞溅 ①短路过渡时电感量不适当,过大或过小;②焊接电流和电弧电压配合不当;③焊丝和焊件清理不良。

CO2气保焊中产生气孔的原因分析

CO2电弧焊时,由于熔池表面没有熔渣盖覆,CO2气流又有较强的冷却作用,因而熔池金属凝固比较快,但其中气体来不及逸出时,就容易在焊缝中产生气孔。 可能产生的气孔主要有3种:一氧化碳气孔、氢气孔和氮气孔。 一、一氧化碳气孔

产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO,该反应在熔池处于结晶温度时,进行得比较剧烈,由于这时熔池已开始凝固,CO气体不易逸出,于是在焊缝中形成CO气孔。

如果焊丝中含有足够的脱氧元素Si和Mn,以及限制焊丝中的含碳量,就可以抑制上述的还原反应,有效地防止CO气孔的产生。所以CO2电弧焊中,只要焊丝选择适当,产生CO气孔的可能性是很小的。 二、氢气孔

如果熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,则留在焊缝金属中

形成气孔。

电弧区的氢主要来自焊丝、工件表面的油污及铁锈,以及CO2气体中所含的水分。油污为碳氢化合物,铁锈中含有结晶水,它们在电弧高温下都能分解出氢气。减少熔池中氢的溶解量,不仅可防止氢气孔,而且可提高焊缝金属的塑性。所以,一方面焊前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。

另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。 三、氮气孔

氮气的来源:一是空气侵入焊接区;二

CO2电弧焊时,由于熔池表面没有熔渣盖覆,CO2气流又有较强的冷却作用,因而熔池金属凝固比较快,但其中气体来不及逸出时,就容易在焊缝中产生气孔。

可能产生的气孔主要有3种:一氧化碳气孔、氢气孔和氮气孔。

一、一氧化碳气孔 产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO,该反应在熔池处于结晶温度时,进行得比较剧烈,由于这时熔池已开始凝固,CO气体不易逸出,于是在焊缝中形成CO气孔。

如果焊丝中含有足够的脱氧元素Si和Mn,以及限制焊丝中的含碳量,就可以抑制上述的还原反应,有效地防止CO气孔的产生。所以CO2电弧焊中,只要焊丝选择适当,产生CO气孔的可能性是很小的。

二、氢气孔

如果熔池在高温时溶入了大量氢气,在结晶过程中又不能充分排出,则留在焊缝金属中形成气孔。

电弧区的氢主要来自焊丝、工件表面的油污及铁锈,以及CO2气体中所含的水分。油污为碳氢化合物,铁锈中含有结晶水,它们在电弧高温下都能分解出氢气。减少熔池中氢的溶解量,不仅可防止氢气孔,而且可提高焊缝金属的塑性。所以,一方面焊前要适当清除工件和焊丝表面的油污及铁锈,另一方面应尽可能使用含水分低的CO2气体。CO2气体中的水分常常是引起氢气孔的主要原因。

另外,氢是以离子形态溶解于熔池的。直流反极性时,熔池为负极,它发射大量电子,使熔池表面的氢离子又复合为原子,因而减少了进入熔池的氢离子的数量。所以直流反极性时,焊缝中含氢量为正极性时的1/3~1/5,产生氢气孔的倾向也比正极性时小。

三、氮气孔

氮气的来源:一是空气侵入焊接区;二是CO2气体不纯。试验表明:在短路过渡时CO2气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。

造成保护气层失效的因素有:过小的CO2气体流量;喷嘴被飞溅物部分堵塞;喷嘴与工件的距离过大,以及焊接场地有侧向风等。

因此,适当增加CO2保护气体流量,保证气路畅通和气层的稳定、可靠,是防止焊缝中氮气孔的关键。

另外,工艺因素对气孔的产生也有影响。电弧电压越高,空气侵入的可能性越大,就越可能产生气孔。焊接速度主要影响熔池的结晶速度。焊接速度慢,熔池结晶也慢,气体容易

逸出;焊接速度快,熔池结晶快,则气体不易排出,易产生气孔。是

CO2气体不纯。试验表明:在短路过渡时CO2气体中加入φ(N2)=3%的氮气,射流过渡时CO2气体中加入φ(N2)=4%的氮气,仍不会产生氮气孔。而正常气体中含氮气很少,φ(N2)≤1%。由上述可推断,由于CO2气体不纯引起氮气孔的可能性不大,焊缝中产生氮气孔的主要原因是保护气层遭到破坏,大量空气侵入焊接区所致。

造成保护气层失效的因素有:过小的CO2气体流量;喷嘴被飞溅物部分堵塞;喷嘴与工件的距离过大,以及焊接场地有侧向风等。

因此,适当增加CO2保护气体流量,保证气路畅通和气层的稳定、可靠,是防止焊缝中氮气孔的关键。

另外,工艺因素对气孔的产生也有影响。电弧电压越高,空气侵入的可能性越大,就越可能产生气孔。焊接速度主要影响熔池的结晶速度。焊接速度慢,熔池结晶也慢,气体容易逸出;焊接速度快,熔池结晶快,则气体不易排出,易产生气孔

CO2气体保护焊的焊接缺陷产生的原因及防止方法 缺陷 产生原因 1、焊缝深宽比太大;焊道太窄(特别是角焊缝和底层焊道) 2、焊缝末端处的弧坑冷却过快 A、焊缝金属裂纹 防止方法 1、增大电弧电压或减小焊接电流,以加宽焊道而减小熔深;减慢行走速度,以加大焊道的横截面。 2、采用衰减控制以减小冷却速度;适当地填充弧坑;在完成焊缝的顶部采用分段退焊技术,一直到焊缝结束。 3、焊丝或工件表面不清洁(有3、焊前仔细清理 油、锈、漆等) 4、焊缝中含C、S量高而Mn量4、检查工件和焊丝的化学成分,更换合低 5、多层焊的第一道焊缝过薄 1、采用多道焊短路电弧(熔焊渣型夹杂物) 2、高的行走速度(氧化膜型夹杂物) 1、保护气体覆盖不足;有风 格材料 5、增加焊道厚度 1、在焊接后续焊道之前,清除掉焊缝边上的渣壳 2、减小行走速度;采用含脱氧剂较高的焊丝;提高电弧电压 1、增加保护气体流量,排除焊缝区的全部空气;减小保护气体的流量,以防止卷入空气;清除气体喷嘴内的飞溅;避免周边环境的空气流过大,破坏气体保护;降低焊接速度;减小喷嘴到工件的距离;焊接结束时应在熔池凝固之后移开焊枪喷嘴。 2、焊丝的污染 C、气孔 3、工件的污染 2、采用清洁而干燥的焊丝;清除焊丝在送丝装置中或导丝管中黏附上的润滑剂。 3、在焊接之前,清除工件表面上的全部油脂、锈、油漆和尘土;采用含脱氧剂的焊丝 4、减小电弧电压 5、减小焊丝的伸出长度 6、更换气体或采用脱水措施 7、应串接气瓶加热器 8、仔细清除附着在喷嘴内壁的飞溅物 9、检查气路有无堵塞和弯折处 1、减慢焊接速度 2、降低电压 3、降低送丝速度 4、增加在熔池边缘的停留时间 5、改变焊枪角度,使电弧力推动金属流动 B、夹渣 4、电弧电压太高 5、喷嘴与工件距离太大 6、气体纯度不良 7、气体减压阀冻结而不能供气 8、喷嘴被焊接飞溅堵塞 9、输气管路堵塞 1、焊接速度太高 2、电弧电压太高 D、咬边 3、电流过大 4、停留时间不足 5、焊枪角度不正确 1、焊缝区表面有氧化膜或锈皮 2、热输入不足 3、焊接熔池太大 4、焊接技术不合适 5、接头设计不合理 1、在焊接之前,清理全部坡口面和焊缝区表面上的轧制氧化皮或杂质 2、提高送丝速度和电弧电压;减小焊接速度 3、减小电弧摆动以减小焊接熔池 4、采用摆动技术时应在靠近坡口面的熔池边缘停留;焊丝应指向熔池的前沿 5、坡口角度应足够大,以便减少焊丝伸出长度(增大电流),使电弧直接加热熔池底部;坡口设计为J形或U形 E、未熔合 1、坡口加工不合适 1、接头设计必须合适,适当加大坡口角度,使焊枪能够直接作用到熔池底部,同时要保持喷到工件的距离合适;减小钝边高度;设置或增大对接接头中的底F、未焊透 2、焊接技术不合适 3、热输入不合适 1、热输入过大 G、熔透过大 2、坡口加工不合适 1、焊丝干伸长过大 H、蛇形焊道 2、焊丝的校正机构调整不良 3、导电嘴磨损严重 1、电感量过大或过小 2、电弧电压过低或过高 3、导电嘴磨损严重 I、飞溅 4、送丝不均匀 5、焊丝与工件清理不良 6、焊机动特性不合适 层间隙 2、使焊丝保持适当的行走角度,以达到最大的熔深;使电弧处在熔池的前沿 3、提高送丝速度以获得较大的焊接电流,保持喷嘴与工件的距离合适 1、减小送丝速度和电弧电压;提高焊接速度 2、减小过大的底层间隙;增大钝边高度 1、保持适合的干伸长 2、再仔细调整 3、更换新导电嘴 1、仔细调节电弧力旋钮 2、根据焊接电流仔细调节电压;采用一元化调节焊机 3、更换新导电嘴 4、检查压丝轮和送丝软管(修理或更换) 5、焊前仔细清理焊丝及坡口处 6、对于整流式焊机应调节直流电感;对于逆变式焊机须调节控制回路的电子电抗器 1、导电嘴内孔过大 2、导电嘴磨损过大 3、焊丝纠结 4、送丝轮的沟槽磨耗太大引起1、使用与焊丝直径相适合的导电嘴 2、更换新导电嘴 3、仔细解开 4、更换送丝轮 5、在调整 6、检查控制电路和焊接电缆接头,有问题及时处理 7、更换或清理弹簧软管 J、电弧不稳 送丝不良 5、送丝轮压紧力不合适 6、焊机输出电压不稳定 7、送丝软管阻力大 焊接应力和变形控制

摘要:为有效控制钢结构因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 关键词:焊接变形,焊接应力,热过程,焊接工艺

在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力 (即使用功能 ),因而,急需采用合理的方法予以控制。

钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有 :1)纵向应力 ;2)横向应力 ;3)厚度方向应力。常见的焊接变形有 :1)纵向收缩变形 ;2)横向收缩变形 ;3)角变形 ;4)弯曲变形 ;5)扭曲变形 ;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施

全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响

焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。

1.2焊接热输入的影响

一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响

多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。

1.4接头形式的影响

在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。

1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。

3)对接接头在单道 (层 )焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。

双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响

1)横向收缩 :在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。

2)纵向收缩 :多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。 在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。所以,了解焊接变形产生的原

因和影响因素,则可以采取以下控制变形的措施 :

1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸 (角度和间隙 )。

2)对屈服强度 345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适当降低预热、层间温度 ;优先采用热输入较小的焊接方法,如CO2气体保护焊。 3)厚板焊接尽可能采用多层焊代替单层焊。

4)在满足设计要求情况下,纵向加强肋和横向加强肋的焊接可采用间断焊接法。 5)双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中和轴对称的焊接顺序。

6)T形接头板厚较大时采用开坡口角对接焊缝。 7)采用焊前反变形方法控制焊后的角变形。 8)采用刚性夹具固定法控制焊后变形。

9)采用构件预留长度法补偿焊缝纵向收缩变形,如H形纵向焊缝每米长可预留 0.5mm~ 0.7mm。

10)对于长构件的扭曲,主要靠提高板材平整度和构件组装精度,使坡口角度和间隙准确,电弧的指向或对中准确,以使焊缝角度变形和翼板及腹板纵向变形值与构件长度方向一致。 11)在焊缝众多的构件组焊时或结构安装时,要采取合理的焊接顺序。

12)设计上要尽量减少焊缝的数量和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。

2焊接应力的控制措施

构件焊接时产生瞬时内应力,焊接后产生残余应力,并同时产生残余变形,这是不可避免的现象。

焊接变形的矫正费时费工,构件制造和安装企业首先考虑的是控制变形,往往对控制残余应力较为忽视,常用一些卡具、支撑以增加刚性来控制变形,与此同时实际上增大了焊后的残余应力。

对于一些本身刚性较大的构件,如板厚较大,截面本身的惯性矩较大时,虽然变形会较小,但却同时产生较大的内应力,甚至产生裂纹。

因此,对于一些构件截面厚大,焊接节点复杂,拘束度大,钢材强度级别高,使用条件恶劣的重要结构要注意焊接应力的控制。控制应力的目标是降低其峰值使其均匀分布,其控制措施有以下几种 :

1)减小焊缝尺寸 :焊接内应力由局部加热循环而引起,为此,在满足设计要求的条件下,不应加大焊缝尺寸和层高,要转变焊缝越大越安全的观念。

2)减小焊接拘束度 :拘束度越大,焊接应力越大,首先应尽量使焊缝在较小拘束度下焊接,尽可能不用刚性固定的方法控制变形,以免增大焊接拘束度。

3)采取合理的焊接顺序 :在焊缝较多的组装条件下,应根据构件形状和焊缝的布置,采取先焊收缩量较大的焊缝,后焊收缩量较小的焊缝 ;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝的原则。

4)降低焊件刚度,创造自由收缩的条件。

5)锤击法减小焊接残余应力 :在每层焊道焊完后立即用圆头敲渣小锤或电动锤击工具均匀敲击焊缝金属,使其产生塑性延伸变形,并抵消焊缝冷却后承受的局部拉应力。 但根部焊道、坡口内及盖面层与母材坡口面相邻的两侧焊道不宜锤击,以免出现熔合线和近缝区的硬化或裂纹。高强度低合金钢,如屈服强度级别大于 345MPa时,也不宜用锤击法消除焊接残余应力。

6 )采用抛丸机除锈 :通过钢丸均匀敲打来抵消构件的焊接应力。

综上所述,在施工过程中,一定要了解焊接工艺,采用合理的焊接方法和控制措施,以便减少和消除焊后残余应力和残余变形。在实践中不断总结、积累焊接经验,综合分析考虑的各种因素,可以保证工程中的焊接质量。

《焊接技巧》

虽然焊接过程没有什么所谓的技术秘诀,但实际焊接过程中有许多的焊接技术、方法以及工艺可以使焊接过程变得更加容易,这些工艺方法被称为技术诀窍。焊接技术诀窍可以节省时间、费用和劳动力,甚至可以决定焊接的成功与失败、利润和损失。大多数的焊接工艺主要是以科学研究为基础的,也有一些焊接工艺以实际焊接经验为基础。本章是实践中一些实际焊接经验的综合。

了解生产中常见的焊接问题以及解决方法,可以帮助解决一些常见的焊接问题。优良的设计准则这部分,阐述了设计焊缝时要考虑的关键因素;针对控制焊接变形问题,介绍了产生变形的原因和对焊接变形的实际矫正。在其他的设计问题中,讨论了角接接头的尺寸以及如何避免产生断裂;简易设计概念主要介绍了一些常见的焊接应用实例;先进设计概念讨论了焊缝的弹性匹配问题和焊接接头放置问题。针对结构钢的焊接问题,着重介绍了一些常见的焊接材料和焊接实践中成功的经验;在氧-乙炔切割方面,提供了解决焊接问题的技巧,讨论了切割应用以及氧矛和燃烧棒的性能;对于焊接结构中经常用到的紧固件,主要介绍了常用螺栓、螺母以及如何应用。

一、焊接工艺问题及解决措施

1.1 厚板与薄板的焊接

1、用熔化极气体保护(GMAW)和药芯焊丝气体保护焊(FCAW)焊接钢制工件时,如果工件的板厚超过了焊机可以达到的最大焊接电流,将如何进行处理? 解决的方法是焊前预热金属。采用丙烷、标准规定的气体或乙炔焊炬对工件焊接区域进行预热处理,预热温度为150~260℃,然后进行焊接。对焊接区域金属进行预热的目的是防止焊缝区域冷却过快,不使焊缝产生裂纹或未熔合。

2、如果需要采用熔化极气体保护焊或药芯焊丝气体保护焊将一薄金属盖焊接在较厚钢管上,进行焊接时如果不能正确调整焊接电流,可能会导致两种情况:一是为了防止薄金属烧穿而减小焊接电流,此时不能将薄金属盖焊接到厚钢管上;二是焊接电流过大会烧穿薄金属盖。这时应如何进行处理? 主要有两种解决方法。

① 调整焊接电流避免烧穿薄金属盖,同时用焊炬预热厚钢管,然后采用薄板焊接工艺对两金属结构进行焊接。

② 调整焊接电流以适合于厚钢管的焊接。进行焊接时,保持焊接电弧在厚钢管上的停留时间为90%,并减少在薄金属盖上的停留时间。应指出,只有当熟练掌握这项技术时,才能得到良好的焊接接头。

3、当将一薄壁圆管或矩形薄壁管件焊接到一厚板上时,焊条容易烧穿薄壁管部分,除了上述两种解决方法,还有其他的解决方法吗?

有,主要是在焊接过程中采用一个散热棒。如将一个实心圆棒插入薄壁圆管中,或将一实心矩形棒插入矩形管件中,实心棒将会带走薄壁工件的热量并防止烧穿。一般来说,在多数供货的中空管或矩形管材料中都紧密安装了实心圆棒或矩形棒。焊接时应注意将焊缝远离管子的末端,管子的末端是最易发生烧穿的薄弱区域。用内置散热棒避免烧穿的示意如图1所示。

4、当必须将镀锌或含铬材料与另一零件进行焊接时,应如何进行操作?

最佳工艺方法是焊前对焊缝周围区域进行锉削或打磨,因为镀锌或含铬金属板不仅会污染并弱化焊缝,而且焊接时还会释放出有毒气体。 1.2 容器及框架结构的焊接

1、如果采用焊接工艺方法(例如钎焊)密封一个浮筒或密封一个中空结构的末端,在进行焊缝的最后密封时,为了防止热空气进入容器而导致容器爆裂,将如何处理?

③首先在浮筒上钻一个直径1.5mm的减压孔,以利于焊缝附近的热空气与外部空气流通,然后进行封闭焊接,最后焊密封减压孔。密封焊接浮筒或密闭容器的示意如图2所示。当焊接储气容器结构时,也可以采用减压孔。应注意的是,在密闭容器中进行焊接是十分危险的,焊前应确保容器或管子内部清洁,并避免有易燃易爆物品或气体存在。

2、当需要采用熔化极气体保护焊、药芯焊丝气体保护焊或钨极氩弧焊将屏栅、金属丝网或延伸金属焊接到钢结构框架上,进行焊接时金属丝网容易产生烧穿和焊缝未熔合现象,应如何进行处理?

① 在金属丝网或延伸金属上放置非金属垫圈并且将垫圈、金属丝网和框架夹紧在一起,不允许采用含铬或镀锌垫圈,垫圈应采用未涂敷的,见图3(a)。

② 在被焊位置的垫圈上部放置一个更大的垫圈作为散热片。上垫圈应具有一个比下垫圈更大的孔,以避免上垫圈也被焊接在一起。然后通过垫圈的两个孔进行塞焊,应使焊缝处于下垫圈部分。操作者可以采取一些其他的方法得到足够的热量并进行焊接,注意要防止周围屏栅或金属丝网烧穿,见图3(b)和(c)。 ③ 另一种方法是采用一个带孔的金属板条,将孔对准需要焊接的部位,并放置散热垫圈,然后进行塞焊,见图3(d)。 1.3 焊接构件的修补

1、除了采用常用的启钉器,还有哪些方法可以移除损坏或生锈的螺钉?

这里主要介绍两种方法。

① 如果安装的螺钉在加热时不会损坏,可以用氧-乙炔焊炬加热恋螺母及其装配件直到红热状态,然后迅速水淬以利于清除螺钉,在这个过程中可能需要几次的加热,冷淬循环过程。 ② 如果螺钉槽、螺母或牙槽损坏或丢失,可以在螺钉头的上部(或残余部分)放置一个螺母,旋紧螺母,然后采用任何焊接方法在螺母和螺钉的内部填充金属。这样就会将螺母和螺钉残余部分连接起来,然后在螺母上放置扳手或牙钳,迅速拔出螺钉。采用这种方法有利于提供一个新的握力点并可利用热量使螺钉紧固,用焊接方法移除固定螺钉的残余部分示意如图4所示。

2、如果有一个磨损的曲轴,用焊接进行修复加固的最好方法是什么?

修复磨损的曲轴时可以采用熔化极气体保护焊、药芯焊丝气体保护焊或钨极氩弧焊方法。但是要得到满意的堆焊焊道形状,必须注意以下4方面的要求。 ① 使堆焊焊道方向与曲轴轴线平行。

② 先在曲轴下部堆焊一条焊道,然后旋转曲轴180°堆焊下一条焊道,这样可以平衡焊接应力,并可显著消除焊接热变形。应注意的是,在第一条焊道上进行顺序堆焊将会引起曲轴翘曲。该堆焊工艺适合于对滚轮曲轴进行修复和焊补。

③ 两条焊道之间必须保持30%~50%的熔敷金属重叠量,以保证焊接修复后机加工时保持焊道表面的平滑。

④ 采用手工电弧焊和药芯焊丝气体保护焊时,必须用毛刷或切削的方法清理焊道之间残留的焊剂。

除上述曲轴修复方法,还可以采用在曲轴的每90°位置增加一条堆焊焊道,以进一步减小焊接变形。在青铜或铜制零部件修复中,添加钎缝金属比采用堆焊的方法在消除应力和变形方面更加有利。用焊接方法修复磨损曲轴的示意见图5。

3、如果有一个钢制轴承件卡在设备中,并且不想报废该设备,应如何采用焊接方法进行去除轴承?

首先在轴承的内表面焊接一条焊道,靠焊道拉伸力减小轴承直径,外加焊接过程的热量应可使轴承活动。直径10cm的管如果在内表面布满焊道将会使钢管直径收缩1.2mm。采用焊接方法清除卡住轴承的示意如图6所示。

4、油罐或船板结构经常会产生裂纹,应如何防止?

首先在裂纹末端钻一个小孔,以利于在较大的范围内分散末端的应力,然后焊接一系列长度不等的多道焊缝,增加裂纹前端钢板的强度。防止钢板产生裂纹扩展的示意见图7。

2.1 加强板的定位及加厚

1、焊接加强板经常被焊接到钢板(基板)的表面,加强板外边缘的角焊缝容易使加强板的中心部位翘起,离开钢板表面并产生角变形,如图8(a)所示。这种现象会增加机加工和车削加工的难度,应如何解决这个问题?

解决的方法是在加强板中间部位采用塞焊或槽焊,将加强板表面与基板表面贴紧,消除变形以利于进行机械加工。采用塞焊或槽焊方法定位加强板示意如图8(b)所示。

2、有时在基板的小区域内需要对基板加厚,但加厚区域不能超过整个基板的面积,应如何解决?

将一厚板金属嵌入基板需要加厚的部位,然后采用焊接方法进行固定。在基板上嵌入厚板的示意见图9。这样可以给后续的机械加工、镗削加工或钻孔提供足够的厚度,并可以代替设备中的大厚度零件或铸造件。

3、增强平板的刚性以承载负荷的标准方法是什么?

增强平板的刚性以承载负荷的标准方法是在平板上垂直焊接一系列的角钢,添加角钢加强筋以增强平板刚性,如图10所示。

2.2 控制噪声和振动

1、哪些技术措施可以用来减小金属板的噪声和振动?

噪声问题和振动问题一样,同样可以采用减小金属板的共振频率来解决。采用的主要方法如下:

① 以折叠、卷边或槽形加强的方式增加刚性; ② 将平板截断成一系列小的部分以增强支撑; ③ 采用表面喷涂层;

④ 在平板的表面粘结一层减振纤维材料。

采用增加共振频率减小噪声的4种方法见图11。在相对较低频率时引起的振动,通常采用增加金属刚度方法来减小振动,如图12所示。

2、当要将一个平板在垂直方向与另一个平板进行角焊缝焊接时,如果现在只有C形夹具,应如何进行工作?

焊接时用一个钢制挡块或者一个矩形物体作为辅助工具,采用C形夹具和矩形挡块夹紧角焊缝,如图13所示。

3.1 布局设计

1、焊接过程中的设计要求主要包括哪些内容?

① 设计时应使设计方案满足零件各部位强度和硬度的要求,但不能超出安全设计标准,应让焊接工程师来检验各部件设计的安全性。如果设计要求的硬度设定的太高,这样的设计会超出安全设计标准,并且会因额外材料、焊接操作和运输等方面的增加而提高整个过程的成本。超出安全设计标准还可能增加用户在燃料、能源和维护等方面长期的费用,因此设计时应请有经验的工程技术人员严格检验设计方案的合理性。

② 应确定结构中焊缝的外观要求,以避免不必要的增高。有时许多设备零件上的焊缝完全被隐藏起来,这样可以减少为了提高焊缝外观质量而增加的焊缝打磨、修整的费用。因此,为了便于让操作者知道哪些焊缝需要进行打磨、修整以具有良好的外观,应在这些部位进行标记。

③ 如果产品必须要求按一定的工艺规程进行焊接制造时,应核对相关的工艺规程以决定采用经济、合理的焊接方法。

④ 用较厚的结构件可以防止产生焊接弯曲和变形。

⑤ 焊接中采用对称结构对于防止焊接弯曲和变形更加有效。

⑥ 在横梁结构的末端焊接刚性支撑件,可以增加结构的强度和刚度,在材质、宽度和承受载荷相同的两个横梁结构中,采用刚性支撑比不采用刚性支撑的焊接结构产生的弯曲变形小,如图14所示。

⑦ 采用封闭式结构或对角拉条结构可以防止发生扭转变形。封闭式结构比开口式结构的弯曲角度小得多,见表1。同时采用适当的加强筋还可以减小结构的质量,提高结构的刚度,如图15~17所示。

在图15中,框架结构的抗扭转变形能力与各部分单独抗扭转变形能力的总和几乎相等,采用封闭式C形框架结构可以提高整体结构的抗扭转变形性能。在图16中,圆形结构比矩形结构的抗扭转载荷更好,主要是由于矩形结构周围剪切应力分布不均匀,而圆形结构载应力集中现象,而且圆形结构在各方向上还具有抗弯曲变形能力。在图17中,采用对角加强筋的焊件结构经常可以代替基座的厚重铸件,提高结构的强度。在抗压应力载荷方面,横向加强筋与纵向加强筋的作用不同,横向加强筋一般常用于铸造结构中,而纵向加强筋常用于焊接结构设计中。

⑧ 在抗扭转载荷方面,对角拉条结构比纵向垂直结构更为有效。图18所示为两种钢结构基座的结构示意,图18(a)中基座是由厚度25mm的钢板组成的,图18(b)中的基座是由厚度10mm的钢板组成的。它们的抗扭转变形能力几乎相同,但对角拉条结构的加强设计与纵向加强结构相比,可以节约60%的结构质量、减少78%的焊接工作量以及54%的总制造费用。 ⑨ 确定结构中可能采用的低级别钢材的位置,在实际的焊接操作过程中,高碳钢和合金钢的焊接需要预热和焊后热处理,但这样会增加焊接结构的成本。因此在焊接结构中仅仅在需要的时候采用高级别的钢材,其余的结构都可以采用低碳钢。 ⑩ 高级别钢种和其他昂贵材料都不是以标准形状的工件供货的。

⑾ 如果结构中需要彩和表面耐磨性能良好的昂贵材料或难焊材料,可以考虑采用碳钢结构作为基底,利用堆焊或表面硬化处理获得满意的表面性能要求。

⑿ 为了节约费用和降低供货时间,一般采用板材、棒材或其他标准形状的结构件进行焊接。 ⒀ 如果板材或棒材必须进行机械加工、磨削或表面硬化处理,那么原始板材或棒材的结构尺寸要求可以迅速从车间或供货厂家方面得到。

⒁ 对设备零部件应确保必要的维修、维护,不要忽视对封闭式结构中的轴承座或其他重要的易磨损零部件的维护,这也适用于电力和压力管线或组件的维护要求。

⒂ 为了进行自动焊接,有时将结构件设计成圆形结构,这样的设计有利于后续的焊接、加工、装配等各个环节,如图19所示。

⒃ 焊接设计前应咨询工厂中有经验的技术人员,可以获得更好的设计方案并可节约费用,这些工作必须在确定焊接设计方案之前进行。

⒄ 焊接设计前应检查结构规定的公差范围和各部分受力情况,实际操作者可能不会掌握更经济、合理的操作规范,因为有时可能不需要更精确的公差要求。 2、零部件的布局设计需要考虑的因素有哪些?

① 首先应考虑零部位数量的最小化,这将减少设备的装配时间和焊接工作量,如图20所示 。

② 对结构布局和设计方案进行优化可以节约材料和焊接时间。在决定采用图21(a)和图21(b)所示的方案之前应考虑材料、切割及焊接的费用,还应考虑边角余料的有效利用。在图21(a)中可以直接使用框架结构剪裁的余料进行后续工艺,这种剪裁方法比采用拼接工艺更加具有经济意义;图21(b)是假设的优化选择方案,框架结构被分成若干个部位进行焊接,这样可以代替从大型板材上切割下料。

③ 环状结构件可以从单块板材或被焊接成嵌套的结构件中切割而成,与上述布局和设计方案的选择一样,确定最佳工艺方案之前,应充分考虑零部件的尺寸公差、材料、切割、焊接的费用以及边角余料的有效利用等。考虑到运输方面的因素,从厚板材料切割嵌套零件并焊接成环状部件可以节约材料费用和运输时间,如图22所示。

④ 在尺寸公差允许的范围内,可以考虑将钢板滚压成环状结构,然后在具有中空的圆形结构中进行焊接,以代替直接从厚板上切割环状结构件,这样可以减少材料的费用,如图23所示。

⑤ 如果焊接结构中环状结构件有数量上的要求,可以考虑将一个平板滚压成一个圆筒结构,然后进行缝焊。也可采用火焰切割将圆筒切割成一系列的环状结构件,如图24所示。 ⑥ 对于非常复杂的一些结构部件可以通过将各零部件进行焊接装配而获得,这样可以节约整体结构的质量、材料及机械加工时间,如图25所示。

⑦ 对平板结构进行卷边处理可以增加钢板的刚度,节约材料的费用,如图26所示。

⑧ 两平板对接焊时,将其中一个板的边缘进行弯曲卷边处理,可以给焊接结构提供一个加强筋,而且费用不高,如图27所示。

⑨ 可以考虑采用波纹形板材以增加板材的刚度,或对板材表面进行压痕处理以增加板材的刚度,如图28所示。

⑩ 在进行各项工艺步骤前,应仔细检查设计方案,看是否可以节约材料,并且使采用的焊接工艺不会影响最终产品的强度要求,如图29所示。 ⑾ 检查焊缝位置是否处于焊接制造过程的最佳位置,图30所示改变焊缝的位置可以减少焊接材料的浪费,更适合于自动化焊接技术的使用。

3.2 焊接准备及接头设计

1、焊接板材的准备过程中需要注意的问题有哪些?

① 从板材上制备焊件坯料的最佳工艺方法主要包括火焰切割、剪切、锯割、冲压下料、冲裁、棒材和管材的车削等。

② 考虑制备焊件坯料方法时,应充分考虑焊件尺寸准确性和坡口质量要求,同时考虑其他材料的后续加工、坡口形状或开坡口的要求。

③ 考虑焊接中切割坯料的尺寸和坡口准备时,应注意并非所有的焊缝都采用连续焊缝。具有连续焊缝的V形坡口有时不能满足使用要求。

④ 对于单面V形坡口,可以采用单割嘴火焰切割开坡口;相反,对于双面V形坡口,可以采用多头割嘴火焰切割开坡口,切割工艺过程可以采用同一台切割设备完成。 ⑤ 厚板材料有时需要开J形或U形坡口,与双面V形坡口相比可以节约焊缝金属。 ⑥ 有时需要考虑铸造或锻压结构是否能消除焊件的复杂截面,以及是否能简化焊接设计和减少制造费用。

⑦ 对于结构连接的关键部位,可以采用昂贵材料(如少量的堆焊合金)代替一般焊接材料,这样可以达到良好的效果。

⑧ 在零部件需要卷边、密闭件或增加加强板时,应考虑用焊接方法制造的工件代替采用锻压件或机械加工件。

⑨ 采用焊接方法并不能处理所有的问题。例如采用成形工艺制造角形结构与采用焊接方法相比,可以减少材料、制造和焊接等费用,如图31所示。

2、焊接接头设计过程中需要注意的问题有哪些?

① 应避免焊接接头的坡口设计过大。例如一个圆形或管状结构和另一个圆形或管状结构的平直表面进行焊接时,就会存在两个问题,即根部熔合情况和是否烧穿。采用正确的接头设计可以得到良好的根部熔合并且不会产生烧穿,如图32所示。

② 为了减少填充材料的使用,可以减小根部间隙和坡口角度,如图33所示 。

③ 厚板结构采用双面V形坡口代替单面V形坡口可以减少焊缝金属,如图34所示。 ④ 有时采用单个焊接接头可以同时焊接三部分焊接结构(如图35所示),上部两板的间隙可以使三部分结构充分熔合。

⑤ 应检查焊接接头位置,以确定适合于焊缝位置的焊接方法,如图36所示 。

⑥ 对于焊接操作者来说,选择焊缝设计时应考虑满足接头强度、使焊缝金属减少及不产生烧穿的要求。图37所示为防止产生烧穿的一些合理的焊缝设计。 3、焊接接头设计过程中焊缝尺寸和数量有哪些要求?

① 应确保采用的焊缝数量适中,不要太多也不要太少,并且焊缝尺寸过大会增加焊接费用。 ② 根据工艺文件或标准的车间工艺规程确定要完成的焊缝数量,设计者应考虑安全因素来设计焊缝,不要增加其他额外的安全因素。

③ 角焊缝接头设计中角焊缝的焊脚尺寸十分重要。由于焊缝的面积和数量会增加焊脚尺寸,因此双焊脚尺寸将会使焊缝金属增加4倍,如图38所示。

④ 在小载荷或无载荷条件下,断续角焊缝可以用于代替同样焊脚尺寸的连续角焊缝。 ⑤ 尽量使焊缝位于焊件较薄的区域,使焊缝尺寸主要集中于薄板上。

⑥ 加强筋或焊接隔板不需要过多进行焊接,应尽可能减小焊脚尺寸或焊缝长度。 4、装配组件的应用有哪些优点?

① 将焊接工作分配给更多的焊工,可以缩短工时; ② 可以提供更好的焊接方法;

③ 可以减少结构变形的可能性;

④ 对小区域的机械加工更加便利; ⑤ 有利于局部区域的应力消除;

⑥ 可以对各部件和密闭式结构进行渗漏试验;

⑦ 在焊接工作前可以进行工艺检验,以利于提高工艺的精确性并纠正错误。 5、组件的焊接装配有哪些步骤?

① 焊前应清理工件表面的油、锈和污物; ② 检查工装夹具,有缝隙的部位需要修补;

③ 夹紧工件到焊接位置并保持焊接过程的稳定;

④ 用固定夹具夹紧临时夹具,使焊接过程始终维持在校正位置; ⑤ 预置接头以补偿焊接时可能产生的收缩;

⑥ 预弯曲零部件以补偿焊接时任何可能产生的变形;

⑦ 使用定位板;

⑧ 有时可以将焊件截断成几部分,对每一部分进行焊接,可以使每部分焊件在中性轴位置保持平衡;

⑨ 对大量复杂结构进行焊接时,可以对各部分组件分别焊接,这样可以使最终的装配更加容易固定。

6、焊接工艺步骤有哪些?

① 尽量提高操作效率,采用焊工辅助装置、良好的固定夹具和夹持设备等; ② 在最短的时间内熔敷尽可能大量的填充金属;

③ 采用焊接辅助板,可以提高开坡口接头第一道焊缝的焊接速度; ④ 采用低氢型焊条消除或降低预热温度; ⑤ 手动将焊条的伸出长度调整到50mm;

⑥ 应尽量在平焊位置进行焊接,采用仰焊或立焊费用要贵一些; ⑦ 如有可能应采用最高焊接速度在平焊位置对角焊缝进行焊接;

⑧ 采用自动焊设备焊接角焊缝接头时,调整焊缝位置可以在接头的根部获得良好的熔深,并且不会影响焊缝的强度。水平板在水平方向30°的角焊缝位置焊接和垂直板水平方向60°的角焊缝的焊接示意如图39所示;

⑨ 可以考虑在较大焊接电流条件下采用大尺寸焊条; ⑩ 在各部件无拘束应力方向进行焊接;

⑾ 采用合适的焊接工艺措施以消除电弧偏吹现象; ⑿ 对在冷却条件下极易产生收缩的接头先进行焊接;

⒀ 应确保采用恰当的焊接速度、焊接电流和焊接电压;

⒁ 采用半自动或全自动焊接方法更加有利于获得良好的熔深和均匀的熔敷金属。 7、焊后对焊接件的清理和检验有哪些步骤? ① 除了某些特殊性能的要求(不包括外观要求),不应将焊缝表面打磨光滑或平滑,因为对焊缝进行打磨的工时和费用较高,通常会超过焊接的费用;

② 采用手工电弧焊和熔化极气体保护焊时,使用铁粉焊条可以降低焊缝表面的清理时间; ③ 焊接时将防飞溅薄膜平行放置在焊缝两边;

④ 获得质量良好的焊缝是焊接的最终目的,但有时一个外观较差焊缝的强度可能会比外观良好焊缝的强度高;

⑤ 过度的焊缝检查工序会增加焊接的总费用。 手工电弧焊焊接工艺

焊接知识库 2009-08-10 16:54 阅读63 评论2

字号: 大大 中中 小小

工艺适用于低碳钢、低合金高强度钢、及各种大型钢结构工程制造重要结构的焊接,确保焊接生产施工质量,特制订本工艺。 一、焊前准备

1、根据施焊结构钢材的强度等级,各种接头型式选择相反强度等给牌号焊条和合适焊条直径。

2、当施工环境温度低于零度,或钢材的碳当量大于0·41%及结构刚性过大,构件较厚时应采用焊前预热措施,预热温度为80℃~l00℃,预热范围为板厚的5倍,但不小于100毫米。

3、工件厚度大于6毫米对接焊时,为确保焊透强度,在板材的对接边沿应开切V型或X型坡口,坡口角度а为60°。钝边P=0~1毫米,装配间隙б=0~1毫米;当板厚差4毫米≥4毫米时,应对较厚板材的对接边缘进行削斜处理,如图:

4、焊条烘培:酸性药皮类型焊条焊前烘焙150℃×2保温2小时;碱性药皮类焊条焊前必须进行300~350℃×2烘焙。并保温?时才能使用。

5、焊前接头清洁要求,在坡口或焊接处两侧30毫米范围内影响焊缝质量的毛刺、油污、水、锈脏物,氧化皮必须清洁干净。

6、在板缝两端如余量小于50毫米时,焊前两端应加引弧、熄弧板,其规格不小50×50毫米。 二、焊接材料的选用

]、首先应考虑母材强度等级与焊条强度等级相匹配和不同药皮类型焊条的使用特性。 2、考虑物件工作条件,及承受动载荷、高应力或形状复杂,刚性较大,应选用抗裂性能和冲击韧性好的低氢型焊条。

3、在满足使用性能和操作性能的前提下,应适当选用规格大效率高的铁粉焊条,以提高焊接生产效率。

三、焊接规范

l、应根据板厚选择焊条直径,确定焊接电流

如表:

板厚(毫米) 焊条直径(毫米) 焊接电流(安培) 备注 3 2.5 80~90 不开坡口 8 3.2 110~150 开V型坡口 16 4.0 160~180 开X型坡口

20 4.0 180~200 开X型坡口

该电流为平焊位置焊接,立、横、仰焊时焊接电流应降低10~15%;>16毫米板厚焊接底层选Φ3.2mm焊条,角焊焊接电流应比对接焊焊接电流稍大。

2、为使对接焊缝焊透,其底层焊接应选用比其他层焊接的焊条直径较小。 3、厚件焊接,应严格控制层间温度,各层焊缝不宜过宽,应考虑多道多层焊接。 4、对接焊缝正面焊接后,反面使用碳气刨扣槽,并进行封底焊接。 四、焊接程序:

l、焊接板缝,有纵横交叉的焊缝,应先焊端接缝后焊边接缝。 2、焊缝长度超过1米以上,应采用分中对称焊法或逐步码焊法。

3、结构上对接焊缝与角接焊缝同时存在时,应先焊板的对接焊缝,后焊物架的对接焊缝。最后焊物架与板的角焊缝。

4、凡对称物件应从中央向前尾方向开始焊接,并左、右方向对称进行。

5、构物件上平、立角焊同时存在时,应先焊立角焊后焊平角焊,先焊短焊缝,后焊长焊缝。

6、一切吊运 \\\"马\\\"部应用低氢焊条,焊后必须及时打渣,认真检查焊脚尺寸要求,用四周焊缝包角。

7、部件焊缝质量不好应在部件上进行反修处理合格,不得留在整体安装焊接时进行。 五、操作要点

1、焊接重要结构时使用低氢型焊条,必须经300-350℃ 2小时烘干,一次领用不超过4小时用量,并应装在保温筒内,其他焊条也应放在焊条箱妥善保管。 2、根据焊条的直径和型号,焊接位置等调试焊接电流和选择极性。

3、在保证接头不致爆裂的前提下,根部焊道应尽可能薄。

4、多层焊接时,下一层焊开始前应将上层焊缝的药皮、飞溅等表除干净,多层焊每层焊缝厚度不超过3~4毫米。

5、焊前工件有预热要求时,多层多道焊应尽可能连续完成,保证层间温度不低于最低预热温度。

6、多层焊起弧接头应相互错开30~40毫米,“T”和“一”字缝交叉 处50毫米范围内不准起弧和熄弧。

7、低氢型焊条应采用短弧焊进行焊接,选择直流电源反极性接法。 六、焊缝质量要求

1、重要结构对接焊缝按设计规定技术要求进行一定数量的X光片或超声波焊缝内部检查,并按设计规定级别评定。

2、外表焊缝检查,所有结构焊应全部进行检查,其焊缝外表质量要求: 1) 焊缝直线度,任何部位在≤100毫米内直线度应≤2毫米。 2) 焊缝过渡光顺,不能突变<90°过渡角度。

3) 焊缝高低差,在长度25毫米,其高低差应≤1.5毫米。

4) 角焊缝K值公差。当构件厚度≤4毫米时0.9KO≤K≤KO+1;当物件厚度>4毫米时,0.9KO≤K≤KO+2。(KO为设计焊脚尺寸) 5) 焊缝咬边。

6) 当板厚≤6毫米d≤0.3毫米,局部d部<0.5毫米;当厚度>6毫米时d≤0.5毫米。(d为咬边深度)

7) 焊缝不允计低于工件表面及裂缝不熔合为缺陷存在。 8) 多道焊缝表面堆叠相交处下凹深度应≤1毫米。 9) 全部焊接缺陷允许进行修补,修补后应打磨光顺。

10) 部件结构材质为铸钢件时,焊后必须经550℃退火处理,以消除应力。 3、焊接构件允许进行火工校正。

焊接工艺

1 什么是焊接接头?它有哪几种类型? 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。

根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,如图1。其中以对接接头和T形接头应用最为普遍。

2 什么是坡口?常用坡口有哪些形式?

根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。

坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形坡口、带钝边单边V形坡口等。 3 表示坡口几何尺寸的参数有哪些?它们各起什么作用? ⑪ 坡口面 焊件上所开坡口的表面称为坡口面。

⑫ 坡口面角度和坡口角度 焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹角称为坡口角度。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料,并降低劳动生产率。

⑬根部间隙 焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。

⑭钝边 焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。

⑮根部半径 U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。

4 试比较Y形、带钝边U形、双Y形三种坡口各自的优缺点? 当焊件厚度相同时,三种坡口的几何形状。 ⑪Y形坡口

1)坡口面加工简单。

2)可单面焊接,焊件不用翻身。

3)焊接坡口空间面积大,填充材料多,焊件厚度较大时,生产率低。 4)焊接变形大。 ⑫带钝边U形坡口

1)可单面焊接,焊件不用翻身。

2)焊接坡口空间面积大,填充材料少,焊件厚度较大时,生产率比Y形坡口高。 3)焊接变形较大。

4)坡口面根部半径处加工困难,因而限制了此种坡口的大量推广应用。 ⑬双Y形坡口

1)双面焊接,因此焊接过程中焊件需翻身,但焊接变形小。

2)坡口面加工虽比Y形坡口略复杂,但比带钝边U形坡口的简单。

3)坡口面积介于Y形坡口和带钝边U形坡口之间,因此生产率高于Y形坡口,填充材料也比Y形坡口少。

5 常用的垫板接头有哪几种形式?它有什么优缺点? 在坡口背面放置一块与母材成分相同的垫板,以便焊接时能得到全焊透的焊缝,根部又不致被烧穿,这种接头称为垫板接头。

常用的垫板接头形式有:I形带垫板坡口、V形带垫板坡口、Y形带垫板坡口、单边V形带垫板坡口等。

垫板接头的操作技能比单面焊双面成形简单,容易掌握,常用于背面无法施焊(如小直径圆筒环缝、夹套容器环缝)的场合,缺点是当垫板和筒体的椭圆度不一致时,两者之间装配在一起时局部会留有缝隙,焊接时,熔渣流入此缝隙时无法上浮,因此易形成夹渣。

JB4708—92《钢制压力容器焊接工艺评定》中规定,有衬垫的单面焊的弯曲角度可按双面焊的弯曲角度标准。

6 焊件对接时有什么技术要求?

焊件对接时的要求如下:

1)不同厚度钢板对接时 ,如果两侧钢板厚度相差太大,则连接后由于连接处的截面变化较大,将会引起严重的应力集中。所以对于重要的焊接结构,如压力容器,应对厚板进行削薄。根据有关技术标准规定:当薄板厚度≤10mm,两板厚度差超过3mm或当薄板厚度>10mm,两板厚度差大于薄板厚度的30%或超过5m时,对厚板边缘应进行削薄,削薄的长度应大于或等于板厚差的3倍。

2)直线形焊件和曲线形焊件对接时,焊缝正好处于交界处,产生较大的焊接应力,成为整个结构的薄弱面。为此,对接处的曲线形焊件应有一直段部分,便于焊缝处于平对接位置。 7 试述焊缝的种类。

焊接后焊件中所形成的结合部分称为焊缝。按结合形式,焊缝可分为对接焊缝、角焊缝、塞焊缝和端接焊缝四种。

⑪对接焊缝 构成对接接头的焊缝称为对接焊缝。对接焊缝可以由对接接头形成,也可以由T形接头(十字接头)形成,后者是指开坡口后进行全焊透焊接而焊脚为零的焊缝。 ⑫角焊缝 两焊件接合面构成直交或接近直交所焊接的焊缝。

同时由对接焊缝和角焊缝组成的焊缝称为组合焊缝,T形接头(十字接头)开坡口后进行全焊透焊接并且具有一定焊脚的焊缝,即为组合焊缝,坡口内的焊缝为对接焊缝,坡口外连接两焊件的焊缝为角焊缝。

⑬塞焊缝 是指两焊件相叠,其中一块开有圆孔,然后在圆孔中焊接所形成的填满圆孔的焊缝。

⑭端接焊缝 构成端接接头的焊缝。

8 表示对接焊缝几何形状的参数有哪些?

表示对接焊缝几何形状的参数有焊缝宽度、余高、熔深。

⑪焊缝宽度 指焊缝表面与母材的交界处称为焊趾。而单道焊缝横截面中,两焊趾之间的距离称为焊缝宽度。

⑫余高 指超出焊缝表面焊趾连线上面的那部分焊缝金属的高度称为余高。焊缝的余高使焊缝的横截面增加,承载能力提高,并且能增加射线摄片的灵敏度,但却使焊趾处会产生应力集中。通常要求余高不能低于母材,其高度随母材厚度增加而加大,但最大不得超过3mm。 ⑬熔深 在焊接接头横截面上,母材熔化的深度称为熔深。一定的熔深值保证了焊缝和母材的结合强度。当填充金属材料(焊条或焊丝)一定时,熔深的大小决定了焊缝的化学成分。不同的焊接方法要求不同的熔深值,例如堆焊时,为了保持堆焊层的硬度,减少母材对焊缝的稀释作用,在保证熔透的前提下,应要求较小的熔深。

9 表示角焊缝几何形状的参数有哪些? 根据角焊缝的外表形状,可将角焊缝分成两类:焊缝表面凸起带有余高的角焊缝称为凸角焊缝;焊缝表面下凹的角焊缝称为凹角焊缝。表示角焊缝几何形状的参数有焊脚、角焊缝凸度和角焊缝凹度。

⑪焊脚 角焊缝的横截面中,从一个焊件上的焊趾到另一个焊件表面的最小距离称为焊脚。焊脚值决定了两焊件的结合强度,它是最主要的一个参数。

⑫凸度 凸角焊缝截面中,焊趾连连线与焊缝表面之间的最大距离。 ⑬凹度 凹角焊缝横截面中,焊趾连线与焊缝表面之间的最大距离。 10 什么是焊缝成形系数?

熔焊时,在单道焊缝横截面上焊缝宽度(c)与焊缝计算厚度(s)的比值称为焊缝成形系数,即

c

焊缝成形系数= ──

s

焊缝宽度和焊缝计算厚度在各种接头中的表示。焊缝成形系数小时形成窄而深的焊缝,在焊缝中心由于区域偏析会聚集较多的杂质,抗热裂纹性能差,所以形成系数值不能太小,如自动埋弧焊时焊缝的成形系数要大于 1.3,即焊缝的宽度至少为焊缝计算厚度的1.3倍。 11 试述焊接工艺参数对焊缝形状的影响。

焊接时,为保证焊接质量而选定的诸物理量(例如,焊接电流、电弧电压、焊接速度、线能量等)的总称为焊接工艺参数。工艺参数对焊缝形状的影响如下:

⑪焊接电流 当其它条件不变时,增加焊接电流,焊缝厚度和余高都增加,而焊缝宽度则几乎保持不变(或略有增加)。

⑫电弧电压 当其它条件不变时,电弧电压增大,焊缝宽度显著增加,而焊缝厚度和余高略有减少。

⑬焊接速度 当其它条件不变时,焊接速度增加,焊缝宽度、焊缝厚度和余高都减少。 焊接电流、电弧电压和焊接速度是焊接时的三大焊接工艺参数,选用时,应当考虑到这三者之间的相互适当配合,才能得到形状良好,符合要求的焊缝。 12 什么是焊缝符号?焊缝符号由几部分组成?

在图样上标注焊接方法、焊缝形式和焊缝尺寸的代号称为焊缝符号。

根据GB324—88《焊缝符号表示法》的规定,焊缝符号一般由基本符号与指引线组成。必要时还可以加上辅助符号、补充符号和焊缝尺寸符号。

13 试述焊缝符号中基本符号的表示方法。

基本符号是表示焊缝横截面形状的符号。几种常用的基本符号表示法。

14 试述焊缝符号中辅助符号的表示方法。 辅助符号是表示焊缝表面形状特征的符号。不需要确切地说明焊缝表面的形状时,可以不用辅助符号。

15 试述焊缝符号中补充符号的表示方法。

补充符号是为了补充说明焊缝的某些特征而采用的符号。 16 试述焊缝符号中指引线的表示方法及应用。

指引线一般由带有箭头的指引线(简称箭头线)和两条基准线(一条为实线,另一条为虚线)两部分组成。

指引线使用时应与基本符号相配合:

1)如果焊缝在接头的箭头侧,则将基本符号标在基准线的实线侧。 2)如果焊缝在接头的非箭头侧,则将基本符号标在基准线的虚线铡。 3)标对称焊缝及双面焊缝时,可不加虚线。 17 试述焊缝尺寸符号及其标注位置。 焊缝尺寸符号的表示。 表5 焊缝尺寸符号

名 称 符 号 焊件厚度 δ 坡口角度 α 根部间隙 ь 钝边 p 焊缝宽度 c 根部半径 R 焊缝长度 L

焊缝段数 n 焊缝间距 E 焊脚 K 熔核直径 D 焊缝计算厚度 S 相同焊缝数量符号 N 坡口深度 H 余高 H 坡口面角度 β

焊缝尺寸符号标注位置,见图19。标注原则是: 1)焊缝横截面上的尺寸标在基本符号的左侧。 2)焊缝长度方向上的尺寸标在基本符号的右侧。

3)坡口角度、坡口面角度、根部间隙等尺寸标在基本符号的上侧或下侧。 4)相同焊缝数量符号、焊接方法代号等标在尾部。

18 什么是焊接位置?焊接位置又如何表示?

熔焊时,焊件接缝所处的空间位置称为焊接位置,可用焊缝倾角和焊缝转角来表示。 焊缝轴线与水平之间的夹角称为焊缝倾角。

通过焊缝轴线的垂直面与坡口的等分平面之间的夹角称为焊缝转角。 根据焊缝倾角和焊缝转角大小的不同数值,可将焊接位置分为平焊、立焊、横焊和仰焊四种。 19 什么是平焊、立焊、横焊、仰焊和全位置焊?

⑪平焊 焊缝倾角0°~5、焊缝转角0°~10°的焊接位置称为平焊位置。在平焊位置进行的焊接就称为平焊。

⑫立焊 焊缝倾角80°~90°、焊缝转角0°~180°的焊接位置称为立焊位置。在立焊位置进行的焊接就称为立焊。

⑬横焊 焊缝倾角0°~5°,焊缝转角70°~90°的焊接位置称为横焊位置。在横焊位置进行的焊接就称为横焊。

⑭仰焊 焊缝倾角0°~15°,焊缝转角165°~180°的焊接位置称为仰焊位置。

⑮全位置焊 管子水平固定对接焊时,因同时包含仰、立、平三种焊接位置,所以称为全位置焊,也称管子的水平固定焊。 20 什么是船形焊?它有什么优点?

T形、十字形和角接接头处于平焊位置进行的焊接称为船形焊,亦称平位置角焊。

船形焊相当于开90°角Y形坡口内的水平对接焊,焊后焊缝成形光滑美观,一次焊成的焊脚尺寸范围较宽,对焊工的操作技能要求也较低,但一次焊成的焊缝凹度较大。调节α角即可调节底板和腹板内熔合面积的分配比例。当δ1=δ2时,取α=β1=β2=45°, 当δ1<<δ2时,取α<45°使熔合区偏于厚板一侧。 21 什么是正接、反接?如何选用?

采用直流电源施焊时,焊件与电源输出端正、负极的接法称为极性。极性有正接和反接两种: 正接——焊件接电源正极,焊条接电源负极的接线法,也称正极性。 反接——焊件接电源负极,焊条接电源正极的接线法,也称反极性。

选用原则:

1)碱性焊条手弧焊采用反接。因为碱性焊条手弧焊采用正接时,电弧燃烧不稳定,飞溅很大,电弧声音暴躁,并且容易产生气孔。使用反接时,电弧燃烧稳定,飞溅很小,而且声音较平静均匀。

同理,埋弧焊使用直流电源施焊时,也采用反接。

2)钨极氩弧焊焊接钢、黄铜时采用正接。因为阴极的发热量远小于阳极,所以用直流正接焊接时,钨极因发热量小,不易过热,同样大小直径的钨极可以采用较大的电流,钨极寿命长;焊件发热量大,熔深大,生产率高。而且,由于钨极为阴极,热电子发射能力强,电弧稳定而集中。

22 什么是焊接电弧的偏吹?磁偏吹?又如何克服?

焊接过程中,因气流的干扰、焊条偏心的影响和磁场的作用,使电弧中心偏离焊条轴线的现象称为焊接电弧的偏吹。偏吹不仅使电弧燃烧不稳定,飞溅加大,熔滴下落时失去保护,还会严重影响焊缝的成形。 直流电弧焊时,因受到焊接回路所产生的电磁力的作用而产生的电弧偏吹称为磁偏吹。因为用直流电施焊时,除了在电弧周围产生自身磁场外,还有通过焊件的电流也会在空间产生磁场。如果导线位置在焊件左侧,则在电弧左侧的空间为两个磁场相迭加,而在电弧右侧为单一磁场,电弧两侧的磁场分布失去均衡,因此磁力线密度大的左侧将对电弧产生推力,使电弧偏离轴线向右侧倾斜,产生磁偏吹见。反之,将导线接在焊件右侧,则电弧将向左侧偏吹。同理,如果导线在电弧中心线下面将不会产生磁偏吹。如果在电弧附近有铁磁性物质存在,如焊接T形接头的角焊缝时,则电弧也将偏向铁磁性物质引起偏吹。

目前,克服电弧的磁偏吹还没有较完善的办法,通常是适当降低焊接电流值(因为磁偏吹的力量几乎与焊接电流的平方值成正比)、随时变换地线位置,使其更靠近焊条轴线和操作时将焊条朝偏吹的方向倾斜一个角度。

采用交流电源施焊时,焊接电弧的磁偏吹现象很弱,通常可不予考虑。 23 什么是熔合比?

熔焊时,被熔化的母材部分在焊道金属中所占的比例称为熔合比。

熔合比可以以焊道金属中母材金属熔化的横截面积SB与焊道横截面积SA+SB之比来计算,即

熔合比=SB/(SA+SB)

式中 SA——焊道金属中焊材金属熔化的横截面积; SB——焊道金属中母材金属熔合的横截面积;

SA+SB——整个焊道金属横截面积。熔合比的表示。

熔合比的大小会影响焊道金属的化学成分和力学性能。焊接接头开坡口与I形坡口相比较,会显著地降低熔合比。因此,生产中可以用开坡口和合理选择坡口形式来调节熔合比的大小。 24 什么是熔滴和熔滴过渡?

弧焊时,在焊条(或焊丝)端部形成的向熔池过渡的液态金属滴称为熔滴。熔滴通过电弧空间向熔池转移的过程称为熔滴过渡。

根据国际焊接学会(IIW)的分类,熔滴过渡主要有自由过渡、短路过渡和混合过渡三大类。

25 什么是熔滴的自由过渡? 熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。

(1)滴状过渡 焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。滴状过渡有两种形式: 1)轴向滴状过渡 手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为轴向滴状过渡。

2)非轴向滴状过渡 在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重

力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。

(2)喷射过渡 熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。喷射过渡还可分为射滴过渡和射流过渡两种形式:

1)射滴过渡 在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡。

2)射流过渡 在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流。 26 什么是熔滴的短路过渡?

焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为熔滴短路过渡。熔滴的短路过渡频率可达20~200次/s。 27 什么是熔滴的混合过渡?

在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡。例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。

28 试述熔滴过渡时产生飞溅的原因。

熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅。 产生飞溅的原因有以下几个方面:

(1)气体爆炸引起的飞溅 用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。

(2)斑点压力引起的飞溅 电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO2气体保护焊采用直流正接时经常会发生这种类型的飞溅。

(3)短路过渡引起的飞溅 CO2气体保护焊采用短路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。

因篇幅问题不能全部显示,请点此查看更多更全内容