知识点总结
一.一元二次方程的根: 2.一元二次方程根与系数的关系: (4)根与系数的关系的应用:
①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;
②求根及未知数系数:方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.
③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 和 的代数式的值,如
④求作新方程:方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。 二.解一元二次方程应用题:
它是列一元一次方程解应用题的拓展,解题方法是相同的。其一般步骤为:
1.设:即适当设未知数(直接设未知数,间接设未知数),不要漏写单位名称,会用含未知数的代数式表示题目中涉及的量; 2.列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;
3.解:解所列方程,求出解来;
4.验:一是检验是否为方程的解,二是检验是否为应用题的解;
5..答:怎么问就怎么答,注意不要漏写单位名称。 常见考法
(1)考查一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵活,所以一直很吸引命题者。主要考查①根与系数的推导,有关规律的探究②两根或一根构造一元二次方程,这类题目一般比较开放; (2)在一元二次方程和几何问题、函数问题的交汇处出题。(几何问题:主要是将数字及数字间的关系隐藏在图形中,用图形表示出来,这样的图形主要有三角形、四边形、圆等涉及到三角形三边关系、三角形全等、面积计算、体积计算、勾股定理等); (3)列一元二次方程解决实际问题,以实际生活为背景,命题广泛。(常见的题型是增长率问题,注:平均增长率公式 误区提醒
(1)方程根的情况,确定字母系数的取值范围时,忽视了对二次项系数的讨论;
(2)忽视〝方程有实根〞的含义,丢掉判别式等于零的情况;
(3)不挖掘题目中的隐含条件导致错解; (4)忽视等式的基本性质,造成失根;
(5)忽略实际问题中对方程的根的检验,造成错解。
因篇幅问题不能全部显示,请点此查看更多更全内容