18世纪末,法国人西夫拉克发明了最早的自行车。这辆最早的自行车是木制的,其结构比较简单,既没有驱动装置,也没有转向装置,骑车人靠双脚用力蹬地前行,改变方面时也只能下车搬动车子。即使这样,当西夫拉克骑着这辆自行车到公园兜风时,在场的人也都颇为惊异和赞叹。
1817年,德国人德莱斯在法国巴黎发明了带车把的木制两轮自行车。这是世界上第一批真正实用型的自行车。
在20世纪,亚洲的中国获得了前所未有的普及和发展。现在中国的自行车产量、消费量、出口量均居世界第一。中国老百姓拥有5亿多辆自行车。年出口达到2000万辆。从某种意义上来说,中国是一个自行车的王国。每天清晨和落日时分,滚滚车流在中国的城市中碾动,这是最为壮观的一道风景,这是一条现代中国流动的长城。
三、 刹车中的物理原理
在骑自行车的过程中,我们常常要用到刹车。刹车时,刹皮与车圈间的摩擦力,会阻碍后轮的转动。手的压力越大,刹皮对车圈的压力就越大,产生的摩擦力也就越大,后轮就转动的越慢。如果完全刹死,这时后轮与地面之间的摩擦就变为滑动摩擦力(原来为滚动摩擦,方向向前),方向向后,阻碍了自行车的运动,因此就停下来了。前剎片是利用摩擦力使车轮减速,同时在接地点产生向后的摩擦力来使车体减速。以前轮夹式剎车和传统后轮轴心的盘式剎车来比较,对同样大小的剎车压力而言,前者因力臂较长,会比后者有较大的力矩,效果较佳。
我们的实验过程如下:
首先,我们选取了一块水平路面,并在地上画一根线作为记号。实验时我们让自行车在通过这根线时开始刹车。通过测量自行车的刹车痕迹来判断不同情况下的刹车状况。
①第一组我们模拟的是不按刹车的情景。实验中,我们可以看到实验者骑自行车经过这根线时没有按下刹车,由于自行车具有初速度,所以会因为惯性继续向前运动。此时,自行车又受到地面滚动摩擦力的影响,在行驶了一段距离后,速度逐渐减慢,直至停止。
②第二组我们模拟的是按前刹车的情景。实验中,我们可以看到实验者骑自行车经过这根线时按下前刹车,由于前轮为从动轮,两轮会同时被卡住。此时,两轮受到的摩擦力由滚动摩擦变为滑动摩擦,在很短的时间内停下来。
③第三组我们模拟的是按后刹车的情景。实验中,我们可以看到实验者骑自行车经过这根线时按下后刹车,由于后轮为驱动轮,所以只有后轮会被卡住。此时,后轮受到滑动摩擦力,而前轮受到滚动摩擦力,自行车仍能在很短时间内停下来。
在实验过程中,我们又发现,当人骑自行车前进时,若遇到紧急情况,一般情况下要先捏紧后刹车,然后再捏紧前刹车,或者前后一起捏紧,这样做是为了防止人由于惯性而向前飞出去.否则后轮会跳起来。这就提醒我们在下坡或高速行驶时,切记不能单独用自行车的前闸刹车,否则会出现翻车事故。
四、上坡时不同行进路线与费力状况的关系
当我们骑自行车上坡时,我们总希望尽量省力一些。根据功的原理:省力必定费距离。因此对于这个问题,我们小组成员猜想不同的行进路线可能对这个问题有一定的影响。为了探究这其中的物理原理,我们的实验过程如下:
①第一次我们模拟的是沿直线上坡的情景。 ②第二次我们模拟的是沿S形路线上坡的情景。
相比之下,第二次实验时的行进路程较第一次长,但是实验者可以明显感到第二次实验时比较轻松。由此我们得出以下结论:根据功的原理,不管行进路线如何,爬上坡顶升高的高度时一样的,但走S行路线所走的路线比较长些,相当于把斜面的长度拉长了,在高度相同的情况下,斜面越长越省力,所以走S 行路线省力些。
同时,在实验过程中,我们还发现,骑自行上坡过程是动能转化为势能的过程,上坡前可以用力蹬几下,这样能增大了车的速度,从而增大了车的动能,上坡过程中,这些动能转化为势能,车子容易爬到坡顶。
五、 变速齿轮中的物理原理
自行车的运动主要是将人脚交替对脚踏板的压力转化为车轮与地面的磨擦力,转化的重要部分是自行车的传动部分。
自行车的传动部分主要是由脚蹬“飞轮”、链条及后轮四部分组成。下面浅谈一下自行车传动部分的工作过程。
人在骑车时,两脚交替把脚蹬踩下“牙盘”转动,由于“牙盘”和“飞轮”的小齿和链条相互咬合,带动了后面飞轮的转动,自行车后轮向前运动,使自行车向前行驶。在新型变速自行车中,中轴链轮上有几个直径不同、齿数不同的齿盘,后轴飞轮有几个直径、齿数不同的齿盘,选择不同齿数的齿轮,通过链条相连带动,后轮转动的快慢就改变了。
。。。
我们的实验过程如下:
①第一次我们模拟的是运用大齿轮组爬坡的情景。实验中,自行车行进的速度比较快,实验者也感到比较轻松。
②第二次我们模拟的是运用小齿轮组爬坡的情景。实验中,自行车行进的速度比较慢,实验者也感到比较吃力。
*几个重要的概念:
传动装置:包括主动齿轮(轮盘)、被动齿轮(飞轮)、链条及变速器。 齿轮比:主动齿轮(轮盘)与被动齿轮(飞轮)的齿数之比; 传动比:齿轮比乘以后轮的直径;
传动行程:传动比再乘以圆周率即为传动行程,即每蹬踏一周单车前进的距离。
*自行车运动力学
自行车运动是一种半机械化运动。人们应掌握一定的机械原理和力学知识,有效地利用传动速比,合理掌握运动强度,巧妙节省体能消耗,从而以充沛的体力,达到高效的运动 ·自行车传动
自行车是传动式机械,它的传动装置包括主动齿轮、被动齿轮、链条及变速器等。齿轮比与传动比关系着自行车的使用效率。后轮运转实质在于:在链条传动下的飞轮带动后轮转动,飞轮与后轮具有相同的角速度,而后轮半径远大于齿轮半径,由线速度增大,提高了车速。
齿轮比:主动轮对被动轮的齿数之比为齿轮比。如果两个齿轮的齿数相同,那末踏蹬一周,两个齿轮和后轮都各旋转一周。假如主动齿轮的齿数大于被动齿轮的齿数,那么每踏蹬一周,被动齿轮转的圈数就大于一周多,速度加大。因此,齿轮比与主动轮的齿数成正比,与被动齿轮的齿数成反比。以g代表齿轮比,c代表主动齿轮的齿数,f代表被动齿轮的齿数,它们之间的关系用公式表示,即:g=c/f
大小齿轮之间用链条相连,则大小齿轮盘沿线速度大小相同,而小齿轮和后轮之间通过轮轴相连,他们的角速度后轮沿速度为
,则
=
之间关系,
则由
,,设
我们通过进一步研究可知人踩踏板速度V和后轮转动速度踏板和大齿轮盘同轴,则
则
由
故
传动比(传动系数):齿轮比乘以后圈直径即为传动比。以d代表传动比,b代表后圈直径,它们之间关系用公式表示,即:d=c/f×b=gb 由此可见,齿轮比确定之后,传动比是与后圈直径成正比的。
例如:轮盘为49齿,飞轮为14齿,后圈直径为27寸(一般习惯用英寸),代人公式即可求出传动比: d=c/f×b=49/14×27 = 3.5×27= 94.5
传动行程:每踏蹬一周,车子向前运动的距离则为传动行程,也叫速比行程。其计算方法是传动比乘以圆周率。以 m代表传动行程,π;代表圆周率(此为常数,π=3.14),它 们之间关系用公式来表示。即 m=c/f×b×π
例如,赛车轮盘为49齿,飞轮为14齿,后轮真径为27寸,求它行程距离时,代人公式: m=c/f×b×π=49/14×27×3.14×2.54 =754CM
以上数据是自行车每踏蹬一周,车子向前行进行745cm, 即 7.54m. 变速自行车是通过调整齿轮比来达到变速目的。 ·速度计算
V=S/T S=V×T T=S/V ·空气阻力
车子向前进,必须借助于一定的力量。人每踏蹬一周的力量,叫前进力,也叫向前推力。前进力与用力、传动比、曲柄(即中轴到脚蹬的连杆)长有关。以Y代表前进力,Q代表踏蹬力量,I代表曲柄长度,D代表传动比,它们之间的关系用公式表示则为 Y=Q×I/D
前进力(Y)与踏蹬力量(Q),曲柄长度(I)成正比,与传动系数(D)则成反比。
例如:传动系数为94.5,曲柄长度为7英寸,踏蹬力量为25公斤力,前进力则为:Y=Q×I/D=25×7/94.5=1.85公斤力
人们骑车向前进时,必须突破空气阻力,这就需要力量。不同风级所产生的风速,和垂直风向每平方米所受到的压力均不相同,只有克服这些因素,车子才能向前行驶。如:无风骑行时受风面积为0.5平方米,自行车前进速度为每小时40公里,空气对人们的压力为5.5公斤力。因此,人们必须用大于5.5公斤的前进力才能使车子前进。当运动员以自己全部体重在踏蹬点上,那么所产生的前进力是多大呢(暂不计算车子摩擦部分所消耗的力量)?例如:一运动员体重70公斤,自行车曲柄长度7寸,传动比为94.5,所产生的前进力是:Y=Q×I/D=70×7/94.5=5.19公斤。前进力是5.19公斤力,遇到六级风的阻力是0.5平方米为5.5公斤,运动员使用全部力量车子前进力才有5.19公斤/0.5平方米 ,仍小于六级风的阻力。所以,在六级风的情况下运用94.5的传动系数的运动员是很难骑车前进的。就必须改变传动系数。
因篇幅问题不能全部显示,请点此查看更多更全内容