arXiv:0712.2468v2 [astro-ph] 11 May 2008IshwareeP.Neupane
DepartmentofPhysicsandAstronomy,UniversityofCanterburyPrivateBag4800,Christchurch8020,NewZealandand
Inter-UniversityCentreforAstronomyandAstrophysics,Pune411007,IndiaE-mail:ishwaree.neupane@canterbury.ac.nz
ChristophScherer
DepartmentofPhysicsandAstronomy,UniversityofCanterburyPrivateBag4800,Christchurch8020,NewZealand
Inthesecondpartofthispaper,weintroduceanovelapproachofconstructingdarkenergywithinthecontextofthestandardscalar-tensortheory.Theassumptionthatascalarfieldmightrollwithanearlyconstantvelocity,duringinflation,canalsobeappliedtoquintessenceordarkenergymodels.Fortheminimallycoupledquintessence,αQ≡dA(Q)/d(κQ)=0(whereA(Q)isthestandardmatter-quintessencecoupling),thedarkenergyequationofstateintherange−1≤wDE<−0.82canbeobtainedfor0≤α<0.63.Forα<0.1,themodelallowsforonlymodestevolutionofdarkenergydensitywithredshift.Wealsoshow,undercertainconditions,thattheαQ>0solutiondecreasesthedarkenergyequationofstatewQwithdecreasingredshiftascomparedtotheαQ=0solution.ThiseffectcanbeoppositeintheαQ<0case.Theeffectofthematter-quintessencecouplingcanbesignificantonlyif|αQ|0.1,whileasmallcoupling|αQ|<0.1willhavealmostnoeffectoncosmologicalparameters,includingΩQ,wQandH(z).ThebestfitvalueofαQinourmodelisfoundtobeαQ≃0.06,butitmaycontainsignificantnumericalerrors,vizαQ=0.06±0.35,whichtherebyimpliestheconsistencyofourmodelwithgeneralrelativity(forwhichαQ=0)at1σlevel.
Keywords:Theoriesofcosmicacceleration,dynamicsofscalarfields,inflationanddarkenergy.
Abstract:Inthefirstpartofthispaper,weoutlinetheconstructionofaninflationarycosmologyintheframeworkwhereinflationisdescribedbyauniversallyevolvingscalarfieldφwithpotentialV(φ).Byconsideringagenericsituationthatinflatonattainsa
1|dφ/dN|≡α+βexp(βN)(whereN≡lnanearlyconstantvelocity,duringinflation,m−P
isthee-foldingtime),wereconstructascalarpotentialandfindtheconditionsthathavetosatisfiedbythe(reconstructed)potentialtobeconsistentwiththeWMAPinflationary
.015
data.TheconsistencyofourmodelwithWMAPresult(suchasns=0.951+0−0.019andr<0.3)wouldrequire0.16<α<0.26andβ<0.Therunningofspectralindex,α≡dns/dlnk,isfoundtobesmallforawiderangeofα.
1.IntroductionandOverview
Itistrueandremarkablethatourunderstandingofthephysicaluniversehasdeepenedprofoundlyinthelastfewdecadesthroughthoughts,experimentsandobservations.Alongwithsignificantadvancementsinobservationalcosmology[1–3],Einstein’sgeneralrelativityhasbeenestablishedasasuccessfulclassicaltheoryofgravitationalinteractions,fromscalesofmillimetersthroughtokiloparsecs(1pc=3.27lightyears).Ithasalsobeenlearnedthatatveryshortdistancescaleslargequantumfluctuationsmakegravityverystronglyinteracting,implyingthatgeneralrelativitycannotbeusedtoprobespacetime(geometry)fordistancesclosetoPlanck’slength,lP∼10−33cm.Inadditiontothisdifficulty,threestrikingfactsaboutnature’scluessuggestthatwearemissingafewimportantpartsofthepicture,notablytheextremeweaknessofgravityrelativetotheotherforces,thehugesizeandflatnessoftheobservableuniverse,andthelatetimecosmicacceleration.
Muchisnotunderstood:whatisthenatureofthemysterioussmoothdarkenergyandtheclumpednon-baryonicdark-matter,whichrespectivelyform73%and22%ofthemass-energyintheuniverse.Thatmeans,wedonotseeandreallyunderstandyetabout95%ofthetotalmatterdensityoftheuniverse.Tounderstandtheneedfordarkenergy,oramysteriousforcepropellingtheuniverse,anddarkmatter,onehastolookatthedifferentconstituentsoftheuniverse,theirpropertiesandobservationalevidences(forreviews,see,e.g.[4–7]).Thecurrentstandardmodelofcosmologysomehowcombinestheoriginalhotbigbangmodelandtheearlyuniverseinflation,byvirtueoftheexistenceofafundamentalscalarfield,calledinflaton.Thestandardmodelofcosmologyis,however,notcompletelysatisfactoryanditappearstohavesomegaps.Iftheuniverseiscurrentlyaccelerating(onlargestscales),whatrecentobservationsseemtoindicate,thenweneedinthefabricofthecosmosaself-repulsivedarkenergycomponent,oracosmologicalconstantterm,which
–1–
hadalmostnoroleintheearlyuniverse,orneedtomodifyEinstein’stheoryofgravityonlargestscalesinordertoexplainthisacceleration.
Whenin1917Einsteinproposedthefieldequationsforgeneralrelativity
Rµν−
1
∼10−5.Theangularsizeofthesefluctuations
encodesthedensityandvelocityfluctuationsatthesurfaceoflastscattering,withredshiftz≃1100.ThiscorrespondstothecosmologicalepochwhenthepresentlyobservedCMBphotonsfirstdecoupledfrommatter.ByplottingthesquaredofamplitudeofCMBtemper-aturefluctuationsagainsttheirwavelengths(ormultipolesinanequivalentFourierpowerspectrum),therecanbeallocatedseveralpeaksatdifferentangularsizes.Thepositionofthefirstpeakisoftenviewedasanindicatorforthespatialcurvatureoftheuniverse,whichrevealsthatthepresentuniverseisnearlyflatandhomogeneousonlargecosmo-logicalscales(>100Mpc),meaningthatΩtot≈1withhighaccuracy.However,whenassumingaflatuniverseonlycontainingpressurelessdust(includingDM)andassumingthecurrentHubbleparametertobeh=0.72±0.08withH0=100hkmsec−1Mpc−1(inagreementwithobservationsoftheHubbleSpaceTelescopeKeyproject[9]),itisfiguredoutthatt0=9±1Gyrs.Thisresult,simplyfollowingfromEinstein’sgeneralrelativity,impliesthataflatuniversewithoutthecosmologicalconstanttermmaysufferfromaseri-ousageproblem.IntroducingDEintheformofaconstantΛ,withΩΛ,0≃0.73,somehowresolvestheproblem,givingt0≃13.8Gyrswithh=0.72.
WhenacceptingtheexistenceofDE,naturallythequestionarises,whatitreallyis.Sincethelate1960′swhenitwasrealizedthat[10]thezeropointvacuumfluctuationsinquantumfieldtheoriesareLorentzinvariant,ithasbeenattemptedtoassociatethis
2.725K
–2–
(quantum)vacuumenergywiththepresentvalueofΛbutwithoutmuchsuccess.Evenwhenplacingacutoffatsomereasonableenergyscale,thisquantumvacuumenergyisstillseveralordersofmagnitudelargerthanthemysteriousdarkenergytoday,ρΛ∼5×10−47GeV4orρΛ∼10−123inPlanckunits(forreviews,see,e.g.[11,12]).Apparently,1/4
ρΛisfifteenordersofmagnitudesmallerthantheelectroweakscale,mEW∼1012eV.Notheoreticalmodel,noteventhemostsophisticated,suchassupersymmetryorstringtheory,isabletoexplainthepresenceofasmallpositiveΛ.
Anotherhurdleinunderstandingthenatureofdarkenergyisthatonlyaverysmallwindowinthemagnitudeofthecosmologicalconstantallowstheuniversetodevelopasitobviouslyhas.ItisstillamysterywhyΩΛhasthevalueithastoday.Itcouldhavebeenseveralmagnitudesoforderlargerorsmallerthanthematterdensitytoday,insteadofΩΛ≃3Ωm.Thisisknownascosmologicalcoincidenceproblem.
Atpresentthemostcommonviewisthatdarkenergyispresumablyconstantandhasaconstantequationofstate,wDE=−1.Butthereremainsthepossibilitythatthecosmologicalconstant(orthegravitationalvacuumenergy)isfundamentallyvariable.Inamorerealisticpicture,atleast,fromfieldtheoreticviewpoints,darkenergyshouldbedynamicalinnature[13].Thisisthecase,forinstance,withalltimedependentsolutionsarisingoutofevolvingscalarfields,withanacceleratedexpansioncomingfrommodifiedgravitymodels,holographicdarkenergy,andthelikes.
Interestinglyenough,therecentobservations(WMAP+SDSS[3])onlydemandthat−1.04 Acompletemodeloftheuniverseshouldperhapsfeatureaperiodofinflationinadistantpast,leadingtoagenerationofdensity(orscalar)perturbationsviaquantumfluctuations.ThisexpectationhasnowreceivedconsiderableobservationalsupportfrommeasurementsofanisotropiesintheCMBasdetectedbyWMAPandotherexperiments. Inthesimplestclassofinflationarymodels,inflationisdescribedbyasinglescalar(oraninflaton)fieldφ,withsomepotentialV(φ).Thecorrespondingactionis √1 −S=d4x 2κ2−g=detgµνisthedeterminantofthemetrictensor. ConstructingconcretemodelsofinflationandmatchingthemtotheCMBandlargescalestructure(LSS)experimentshasbecomeoneofthemajorpursuitsincosmology.MostearlierstudiesregardingtheformofaninflationarypotentialreliedonapriorchoiceofthepotentialV(φ),oronslow-rollapproximationsinthecalculationofpowerspectraandtheirrelationtothemassofthefieldφduringinflation(see[14]forareview).Thelatterapproachcanatbestproducethetailofaninflationarypotential,butnotitsfullshape[15].Indeed,recentstudiesshowthatthetypeorvarietyofscalarpotentialallowedbyarrayofWMAPinflationarydataisstilllarge[16].Although,inordertounderstand –3– thedynamicsofinflation,theideaofutilizingoneortheotherformofthescalarfieldpotential(motivatedbyphysicsbeyondthestandardmodelorevenbytheoriesofhigherdimensionalgravity,suchas,stringtheory)isnotbadatall,theremightexistamoreelegantwayofconfrontingtheWMAPinflationarydatawithatheoreticalmodel. Inthispaperwepresentadifferentandrobustapproachtotacklethisproblem:wedonotmakeaspecificchoiceforV(φ),ratherwemakeasimpleansatzforthescalarfieldφandthenconstructaninflationarypotential,usingthesymmetryofEinstein’sfieldequations.Ourapproachwouldbenovelinthesensethatitprovidesauniqueshape(andslope)tothescalar(orinflaton)potential.Themodelalsomakesfalsifiablepredictions.Thebasicideasandsomeoftheresultswerepresentedinarecentpaper[17]. Forsimplicity,weconsideraspatiallyflatFriedmann-Robertson-Walkerspacetime.Theevolutionofthefieldφisthendescribedbytheequation(see,e.g.[18]) ˙=m(−2H˙)1/2=−2m2dφPP m2 P ˙d=3H2(φ)+φ dφ 2 H(φ), (2.3) whereH(φ(t))≡a/a˙istheHubbleparameteranda(t)istheFRWscalefactor,andthedotdenotesaderivativewithrespecttothecosmictimet. LetusfirstbrieflydiscusshowthemodelthatwearegoingtoconstructcouldsatisfyinflationaryconstraintsfromtheWMAPandotherexperiments.First,notethattheterm d 2m2 P 2 (6−φ)e ′2 2κφ′κ2φ′φ e ∼ 2H0 6Hholdsingeneral,soV(φ)>0.Inflationoccursaslongasthecondition a¨ dφ 2 >0 ˙2.But,afterasufficientnumberofe-foldsofexpansion,infla-holds,meaningthatV(φ)>φ tionhastoend.Thisispossiblewhenthequantity(mP/H(φ))(dH(φ)/dφ)becomescompa-rableto(orevenlargerthan)unity.RecentresultsfromWMAP[3]indicatethatthespec-.015 tralindexofthescalarperturbationsisconsistentwithalmostflatone,ns=0.958+0−0.019.Toagoodapproximation,1−ns≃α2,implyingthatα<0.25.Thissimplepicturehasobviousandintuitiveappeal,whichcanberealizedthroughanexplicitconstruction. –4– Toillustratetheconstruction,wemakethefollowingansatz φ ai−a =1dlna≃−α.Onemaythinkthattheabovechoicefor φisadhocand/ornomoremotivatedthanaparticularchoiceofV(φ),butitisnotexactly!Indeed(2.5)isthepropertyofaninflatonfieldinmanywellmotivatedinflationarymodelsthatsatisfyslowrollconditions,afterafewe-foldsofinflation.Itcanalsobecomparedtoagenericsolutionforadilaton(ormodulusfield),i.e.φ(t)∼φ0+α0lnt+α1/tγ(whereγ>0),infour-dimensionalsuperstringmodels(see,e.g.[18,19]).Additionally,theansatz(2.5)allowsustoconstructanexplicitinflationarymodel,providinganappropriateshape(andslope)tothescalarfieldpotential. Theevolutionofφasgivenineq.(2.5)isprovidedbytheHubbleparameter mP H(φ)=H0exp− α2 4 e−2βN(φ), (2.6) whereN(φ)≡ln(a/ai),a≡a(φ(t))andH0isanintegrationconstant.Wecaneasilyevaluatethefollowingtwoinflationaryvariables ǫH(φ)=2m2 P 1 2 =1 (2.8) H(φ) dφ2 dH(φ) β+αe−βN(φ) (whicharefirst-orderinslowrollapproximations).Themagnitudeofthesequantitiesmustbemuchsmallerthanunity,duringinflation,inordertogetasufficientnumberofe-foldsofexpansion,likeNe≡ln(af/ai)50.Moreprecisely,werequire|ǫH|≪1,|ηH|<1,exceptneartotheexitfrominflationwhereǫH1.Onemayactuallydemandthat0≤ǫH≤3,sothatthescalarfieldpotential 2 V(φ)=m2H(φ)3−ǫHP (2.9) isnon-negative.AtypicalshapeofthispotentialisdepictedinFig.1.Themagnitudeof H0(cfeq.(2.6))canbefixedusingtheamplitudeofdensityperturbationsobservedattheCOBEexperiments,usingthenormalization[20]: √ (dV/dφ)−1V3/2/( Κ2VΦH02 8642 10203040506070 lna Figure1:Theshapeofthepotential,forsomerepresentativevaluesofα=0.2,0.3,0.4(toptobottom),β=−0.2andN(φ)≡lna+c.Wehavetakenc=−10. AslongastheparameterǫH(φ)isslowlyvarying,thescalarcurvatureperturbationcanbeshowntobe[21] Γ(ν)1/2 PR(k)=2ν−3/2,(2.11) ˙2π|φ|aH=kwhereν=3/2+1/(p−1)anda∝tp.ThescalarspectralindexnsforPRisdefinedby ns(k)≡1+ dlnPR α+µ ,(2.13) whereµ≡βeβNe.Intheconventionalcasethatβ=0,whichcorrespondstoascenario whereinflationisdrivenbyasimpleexponentialpotential,V(φ)∝eα(φ/mP),weobtainawellknownresultthat1−ns≃α2.HereweshallassumethatNe≥47andβ<0. Letusalsodefinetheslopeorrunningofthespectralindexns,whichisgivenby α≡ dns dN dN dlnk (2.14) (tildeisintroducedheretoavoidconfusionwiththeexponentparameterαintroducedin eq.(2.5)),whereφandkarerelatedby dφ 2ǫH(φ) whileNandφarerelatedby mP dN Β00.050.10.150.2 0.005 00.050.10.15 Β 0 Α 0.0050.010.015 0.2 0.005 0 Α 0.0050.010.015 Figure3:Contourplotsforns=0.95withNe=50(leftplot)andNe=60(rightplot). Itisalsosignificanttonotethat,forα≪|β|,thereexistsasmallwindowintheparameterspacewhere ns≃0.95, r∼O(10−3−10−6), inwhichcase,however,theslopeparametersαandβmustbefinelytuned.InFig.3weshowthecontourplotswithNe=50andNe=60,representingsuchacase.Infact,inthecase|α|<0.05,thegravitywaves(ortensormodes)arealmostnonexistent.OntherightplotinFig.4weshowtherunningofspectralindexα,whichisalwaysverysmallintheparameterrange0.1<α<1andβ<0. ns 0.980.970.960.95 Β Α 0.2 0.150.10.05 0.000020.000040.000060.000080.00010.00012Β 0.20.150.10.05 0.00014 Figure4:Thescalarspectralindexns(leftplot)anditsrunningαwithrespecttoβandα=0.16,0.20and0.24(toptobottom).Thesolid(dotted)linesareforNe=60(Ne=47).Therunningofnscouldbelargeonlyif|α||β|;forexample,α≃−0.004forα≃0.01andβ≃−0.05. Inamodelwithmorethanonescalarfield,thedependencyofinflationaryvariableslikensandrontheslopeparametersαandβcouldbemorecomplicatedthanthesim-plestexplanationprovidedabove.Nonetheless,ourapproachhasgreatsignificanceasitgenericallyleadstoaspectrumofprimordialscalarfluctuationsthatisslightlyred-tilted(ns1)andhencecompatiblewithWMAPinflationarydata. –8– 3.ConstructingQuintessenceCosmology Itisreasonabletoassumethatalatetimeaccelerationoftheuniverseisdrivenbythesamemechanismusuallyexploitedtogiveearlyuniverseinflation,wherethepotentialenergyofascalarfielddominatesitskineticterm.Tothisend,letusassumethatthecurrentexpansionoftheuniversecanbedescribedbytheaction √1 S=Sgrav+Sm=d4x− 2κ2 −gA(Q) 4 i ρi,(3.2) whereψmrepresentscollectivelythematterdegreesoffreedomandradiation.IntheabovedefinitionofthematterLagrangian,theimplicitassumptionisthatmattercouplestog˜µν≡A(Q)2gµν,ratherthantheEinsteinmetricgµνalone.Thisassumptionthenresultsinanon-minimalcouplingbetweenthescalarfieldQandmattercomponents(ρi).Thematter-scalarcouplingA(Q)maybeunderstoodasanaturalmodificationofEinstein’sGRwhichcanbemotivatedby,forinstance,scalar-tensortheory.Forfurtherdiscussionsontheoreticalmotivationsofthiscoupling,see,forexample,[23–26]. ThecouplingA(Q)actuallygeneratesanewterm,namely 2δLm− −g (i) µTµ(i), dQ (3.3) inthescalarwaveequationforQ.Thisexpressionalsoimpliesthatradiationdoesnot coupletothescalarfieldQsinceitstraceoftheenergy-momentumtensorequalszero.AswewillshowthecouplingdA(Q) ∂t =0(3.4) andhenceV(Q)=const≡ΛandA(Q)=const.ThemodelthenreducestotheΛCDMcosmology,giventhatdarkmatterischaracterizedbynon-relativisticparticlesalone,wm=0.ThecosmologicaltermΛ,whichisgovernedbytheequation µµµ m2G=2Λδ+T,νννP (3.5) canclearlyactasasourceofgravitationalrepulsionorputativedarkenergy. Allthediscussionssofarhavebeenmadewithoutmakinganyparticularchoiceofmetric.ThusthenatureofV(Q)actingasarepulsiveforceisrathergeneral.Foramoredetailedtreatment,itisnecessarytoevaluatetheequationsgeneratedbyvariationofthe –9– totalactionS=Sgrav+Sm.Thereforeaparticularchoiceofametrichastobemade.WemakeratherstandardchoiceofaspatiallyflatFRWmetric: ds2=−dt2+a(t)2dx2, (3.6) wherea(t)isthescalefactorofaFRWuniverse.Thischoiceofthelineelementiswellmotivatedbytheobservationalfactthattheuniverseisspatiallyflatonlargestscales,whichisconsistentwiththeconceptofinflation,discussedintheprevioussection.Ofcourse,thischoiceofmetricmayleadtosystematicerrorsinthecalculation,astheuniverseactuallyisnothomogenousatsmaller(orgalactic)scales,aspointedout,forexample,in[22],whichisignoredinthissimplifiedassumption. Intheminimalcouplingcase,A(Q)≡1,itiseasytoseethat ρi∝[a(t)]−3(1+wi), (3.7) wherewi≡pi/ρi.Inthenon-minimalcouplingcasethemodifiedscalefactoraisgivenbya=a(t)A(Q).Asaconsequence,differentequationofstateparameters(cfeq.(3.3))wouldcausedifferentenergydensitiestoevolvedifferentlywithchangingscalefactor: ρi∝(a(t)A(Q))−3(1+wi). (3.8) Thisimpliesthatρm∝(a(t)A(Q))−3andρr∝(a(t)A(Q))−4,respectively,forordinarymatterandradiation.Italsoshowsthatradiationneverdirectlycouplestothescalarfield,evenwithA(Q)beinganarbitraryfunctionofQ.Asexplainedin[17],thecouplingA(Q)canberelevant,especially,inabackgroundwhereρmismuchlargerthanρcrit(where 2/8πG),e.g.,agalacticenvironment.ρcrit≡3H0 3.1BasicEquations Takingavariationoftheaction(3.1)withrespecttogµνandthenevaluatingthettand xxcomponentsofEinstein’sequationleadstothefollowingtwoequations(cfeq.(A.1)): 324˙Q+V(Q)+A(Q)ρi=0(3.9)− 2 i 1˙2−V(Q)+A4(Q)(3.10)wiρi=0Q 2 i AvariationwithrespecttothescalarfieldQ,whileconsideringanexplicitmatter-scalarcoupling,yieldsthefollowingequationofmotionforQ(cfeq.(A.2)): ¨+3HQ˙+dV(Q)Q dQ i theso-calledtheKlein-GordonequationforQ.ItshowsthatthescalarfieldQcouplesto thetraceoftheenergy-momentumtensorgµνTµνsatisfying ¨+3HQ˙=−dV(Q)−∇2Q=Q dQ µ Tµ. 1−3wiρi=0, (3.11) (3.12) Thereisdissensionaboutthesignofthecouplingtermbetweenthescalarfieldandmatter µinaboveequationinthewaythatitmightbe+A3dA(Q)dQTµ.In thispaper,thenegativesign,aswrittenineq.(3.11),willbeused. –10– Theabovesetofequationscanbesupplementedbyafourthequation,arisingfromtheequationofmotionforaperfectbarotropicfluid (aA) dρi H2 = H′ dA(Q)A 2 3H2 , ΩQ≡ κ 1 κ2ρQ 3H2 ≡ 2 Q˙2−V(QQ)2Q˙2 +V() ≡ pQ dκQ .Intheabovewehaveusedtherelation∂ ∂ H whichwillbeusedlater.Ofcourse,inthecaseofaminimalcoupling(A(Q)≡1),αQvanishes,reducingthenumberofdegreesoffreedominthesystemofequations(3.17)-(3.20)byone,whichthenmakesthesystemeasiertohandle.Anyhowinbothcases(αQ=0andαQ=0)itisnotpossibletofindananalyticalsolutionofthissystemwithoutmakingsomeadditionalassumptionsastherearemoredegreesoffreedomthanindependentequations.Infact,thenumberofdegreesoffreedomdependsonthenumberofmattercomponentsincludedintheanalysis. Asthefirstcheckforcompatibilityofthemodel,itisusefultoconsidersomesimplifiedsolutionoftheequations(3.14)-(3.20),byexpressingallmatterfieldsasonecomponent,wi≡wm.Byapplyingeq.(3.21)toeq.(3.14),andafterasimpleintegration,weget e−3lnaexpρm=ρ(0)m Q′αQ3wm−1+3wmdlna, (3.24) whichcanbeinterpretedasaglobalenergyconservationequation.Thus,fornotviolatingthisprincipleofenergyconservation(3.22),asignchangein(3.19)automaticallyimpliesachangein(3.20)aswell. Whenhavingaparticularsolutionoftheequations(3.17)-(3.20),itisofgreatinteresttostudyhowthecorrespondingpotentiallookslikeandhowitaffectsthecosmicevolutionofouruniverse.Fromthelastexpressionineq.(3.15),wefind 3Ω2Q Q′V(Q)≡H2,(3.23)2 beinganarbitraryconstant.ThecouplingαQmaybeconstrainedbyobservationswithρ(0)m perhapsonlyinthecombinationQ′αQ.OnecanstudytheeffectofthiscouplingonbothCMBtemperatureanisotropiesandevolutionoflinearmatterperturbations,asin[29].Intheminimalcouplingcase,onehas ρm∝a−3(1+wm). (3.25) Thisisexactlythebehaviouronewouldexpectfromgeneralrelativity.Equation(3.25)yieldsρm∝a−3inauniversecontainingonlyordinarymatter(ordust),whileforradiationρr∝a−4.Transposingeq.(3.18)leadstoageneralexpressionfortheequationofstateoftheDEcomponentwhichcangenerallybewrittenas 2ǫ+3i1+wiΩi+3ΩQ wQ=− ρtot , ptot≡pQ+pi,ρtot≡ρQ+ρi, (3.27) whereaspQandρQareasdefinedineq.(3.16),andpi≡A4(Q)pi,ρi≡A4(Q)ρi.Themean-ingofweffissomehowthatofameanequationofstateofallmatter-energycomponents, –12– includingthedarkenergycomponentρQ.Fromeq.(3.18),togetherwitheqs.(3.15)-(3.16),wefindthatthetotalpressureisgivenby 23H ptot=−ΩQ−Ωi.(3.28) 3 i Combiningthisexpressionforptotwiththeexpressionoftotalenergydensityρtot,asdefinedby(3.27),andusingagainthesubstitutions(3.15)-(3.16),weget weff=−1− 2ǫ aH2 =−1−ǫ,(3.30) showingthatthename“decelerationparameter”makessenseinsuchawaythatq>0foradeceleratedexpansion(¨a<0),whileq<0foranacceleratingexpansion(¨a>0). AsexplainedintheIntroduction,onereasonforconsideringauniversecontaininganonzeroDEcomponent,eitherintheformofacosmologicalconstantΛoradynamicallyevolvingscalarfieldQ,istherecentlyobservedacceleratedexpansionoftheuniversebytheSupernovaCosmologyProjectandtheHigh-redshiftSupernovaSearchteam[1].Thuswefinditusefultostudythesolutionofequations(3.17)to(3.20),whichyieldsanacceleratedexpansioninageneralcontextofnontrivialmatter-scalarcoupling. Indeed,independentofanyassumptionorspecificcompositionoftheuniverse,simplytheconditionweff<−1/3atsomestageofcosmicevolutionyieldsanacceleratedsolution.Itshouldbenotedatthisstage,thatnosuchgeneralconnectioncanbeestablishedbetweentheDEequationofstateparameterwQhavingaspecificvalue(evenlikewQ=−1)andtheuniversebeinginanacceleratingphase. Inthenotationsusedinthispaper,boththenon-baryonic(cold)darkmatterandordinarymatter(pressurelessdust)arecombinedinonematterconstituentΩm.AswDM≈0isarathergoodapproximationfortheequationofstateofcolddarkmatter(sinceitisnon-relativistic)thiscombinationseemstobereasonable.Thisassumptionasregardsthecompositionoftheuniversetodayimpliesthatitsonlyconstituentsarecolddarkmatter,ordinarymatter,radiationandDE.Puttingthiscomposition(Ωm∼=0.27,ΩQ∼=0.73and −4Ωr∼=10)oftoday’suniverseintotheverygeneralexpressionoftheDEequationofstate parameterwQ(cfeq.(3.26))andusingagainwm=0andwQ≃−1,thevalueǫ=−0.4isobtained.ThisimpliesthatforwQatleastbeingcloseto−1theuniverseisinanacceleratingphasetoday,whichiswhatisobserved. Thegeneralconsiderationssofarseemtobeconsistentwithobservations.Asobserva-tionsseemtoindicateavalueforwQcloseto−1,thepossibilityofadarkenergycomponentsimplybeingacosmologicalconstantcannotberuledout.Butitisalsoimportanttore-alizethattheeffectsofaslowlyrollingscalarfieldwouldbealmostindistinguishablefrom 1(Q/H˙)0.1atpresent.EvidencethatofapurecosmologicalconstantifκQ′≡m−P forwQ∼−1couldactuallyimplythatthefieldQisrollingonlywithatinyvelocityatpresent.Thispointshouldbemoreclearfromthediscussionbelow. Alltheexaminationssofarhavebeeninarathergeneralwaywithoutimposinganyadditionalassumptions.Forsurethatisnotreallysatisfying,asonemightbeinterestedin –13– ananalyticsolutionofthesystemofequations(3.17)to(3.20).Asmentionedabovethisisnotpossiblewithoutfurtherinputbecauseofthenumberofdegreesoffreedomexceedingthenumberofindependentequations.Inthenexttwosubsectionstwodifferentanalyticsolutionswillbepresentedmakingsomesimpleadditionalassumptions.AccordingtothepresentconstitutionoftheuniversebeingΩm≃0.27andΩQ≃0.73,itisreasonabletoneglecttheradiationcomponentatleastforredshiftzO(10).Thereforethemodeluniverseassumedinthenexttwosectionsisthoughttoonlyconsistofcolddarkmatterandordinarymattercombinedinonecomponentwithacommonequationofstatewm=0andaDEcomponentrepresentedbythescalarfieldQwithavariableEoSwQ. Thesystemofequations(3.17)-(3.20)canthenbeexpressedintheform: Ωm+ΩQ=1 2ǫ+31+wQΩQ+3Ωm=0 ′ ΩQ+2ǫΩQ+3ΩQ1+wQ+Q′αQΩm=0 (3.31)(3.32)(3.33)(3.34) Thenumberoffreeparametersinthissystemisfive(Ωm,ΩQ,wQ,ǫandαQ),meaningtwoadditionalassumptionshavetobemadetofindananalyticsolution.Toproceedfurther,wemakethefollowingassumption: Q=Q0+mPαln[a(t)]≡Q0+mPα(N+const), (3.35) whereαisaconstantwhichneedstobefixedbyobservations.ThisrelationactuallyrepresentsagenericsituationthatthefieldQisrollingwithaconstantvelocity,Q′=const1.Intheminimalcouplingcasethisisenough,whileinthenon-minimalcase(αQ=0)onemoreassumptionisrequired,whichwillbediscussedbelow. Simplytransposing(3.16)andutilizingtherelationbetween∂∂N,asgivenby(3.21),yieldsthefollowingusefulrelation wQ= κ2Q′2−3ΩQ 3ΩQ . (3.36) ′ +2ǫΩ+3Ω−QαQΩm=0.Ω′mmm Supplementingequations(3.31)-(3.34)withthisequationisanelegantwayofimposingan additionalconstraintintothemodel.3.2UncoupledQuintessence IntheA(Q)=1case,thesystemofequations(3.31)-(3.34),supplementedbyeq.(3.35),cannowbesolvedanalytically.Theexplicitsolutionisgivenby ΩQ=1− λ 3α2exp[−λN]+3λc1ǫ= 1 (3.38) −c1α2λ−9exp[−λN] ˙˙=const.Forα<0.6,ourapproachNotethatwearedemandingQ′≡dQ/dlna=Q/H≃const,notQ appearstogiveconsistentresultswhenappliedtoobservationaldata;seealsothereview[30]forextensivediscussionsonvariousmethodsofreconstructingdarkenergypotentials.Seeref.[31]foraverydifferentapproachofdarkenergyreconstruction. –14– whereN≡N(Q)=ln[a(Q(t))]andwehavemadethesubstitution λ≡3−α2. Usingeqs.(3.29)and(3.30)wealsoevaluate q= 3exp[−λN]−c16− . 5α2 +α4 (3.42)(3.40) 9exp[−λN]+3c1λ Thisgeneralsolutioncontainsthreefreeparameters(N,αandc1).Tokeepthesolutionasgeneralaspossibleitisusefultojustfixonefreeparameterintermsoftheothertwo.Theintegrationconstantc1canbefixedintermsofthefieldvelocityαbyusingtheobservationalinputΩm0=0.27atpresent.Thee-foldingtimeNinrelationtothecosmictimetisonlydefineduptoanarbitraryconstant,soitneedstobenormalisedinsomeway.Forsimplicity,thiswillbedonebytakingN=0atpresent.Thus,theconditionΩm[N=0,α,c1]≡Ωm0yields 3−α2−3Ωm0 c1= λem = a0 a0 = 1 wQ 0.50.250.250.50.75 1 246 8 10z wQ 2 0.20.40.60.81 4 6810z Figure5:wQwithrespecttoredshiftz(leftplot)forα=0,0.5,1.0,1.48,1.8,and(rightplot)α=0,0.15,0.3,0.45,0.6(bottomtotop). Ε 1 0.511.52 0.250.50.75 2345 z q0.750.50.25 1 2 3 4 5z 2˙Figure6:Theslowrollparameterǫ≡H/Handdecelerationparameterqwithrespecttoz,and α=0,0.7,1.0,1.48,1.6(fromtoptobottom,leftplot)or(bottomtotop,rightplot). weff 1 0.20.40.60.82345z weff 0.5 0.20.40.60.8 1 1.5 2 z Figure7:TheeffectiveEoSweffwithrespecttoredshiftz:(leftplot)α=0,0.7,1.0,1.48,1.6(bottomtotop)and(rightplot)α=0,0.4,0.6,0.8,1.0(bottomtotop). self-repulsiveformofenergyinrecenttime.Forafurtherunderstandingofthissolutionitisusefultolookatthedecelerationparameterq. InFig.6,itcanbeeasilyseenthat,forall0≤α<1.48,qgetsnegativesomewhenbetweenredshiftsz=0andz=1,whichimpliesthatinthismodelacceleratedexpansionisaratherlatetimephenomenonwiththeuniversegettingintoanacceleratedphasetheearliestforα≡0,correspondingtothecosmologicalconstantcase.Inthecaseofα=1.48,qexactlyequals0.5,correspondingtoadeceleratedexpansionatconstantdeceleration. –16– 4z321010.750.5m0.25Q 21.51Α0.5000.80.60.40.2000.5Α1.5112z34Figure8:ΩmandΩQwithrespecttoαandz.Thesequantitiesmaynotchangewithzonlyifα=αcrit=1.48,inwhichcaseobviouslytherewon’tbeacosmicacceleration. Finally,forα>αcrit=1.48,qisgreaterthan0.5andincreaseswithdecreasingredshift,yieldingadeceleratedexpansion.ThisfitstotheevolutionofthedarkenergyEoSwQ,asseeninFig.5(forα>αcrit,wQ>0). FromFigs.7and8wecanseethatforthesolutionwhichleadstoalatetimeac-celeration(weff<−1/3)theuniverseisclearlydominatedathighredshiftbyΩmwithatransitiontoΩQdominanceinrecenttimeleadingtoΩm=0.27andΩQ=0.73atz=0.(Thatforsuredoesnotcomesurprisingly,sincethatwastheassumptionmadewhenfixingc1).Itisperhapsmoreinterestingtonotethatforα=1.48theratioΩQ/Ωmremainsconstantforallz,whereas,forα<1.48,theearlyuniversewouldbedominatedbyΩmwithashifttodarkenergydominanceintherecentepoch.TheobservedaccelerationandDEdominancecorrespondbesttovaluesofαclosertozero. UncertaintiesinthecurrentvalueofΩmaffectαcrit,tosomeextent,andhencethepredictedvalueofwQatsomefixedredshift.Thatis,foravalueofΩmdifferentfrom0.27 √ atpresent,thecriticalvalueofα,i.e.αcrit= thatatransitiontotheacceleratedphase(q<0)occursforwQtendingto−1andΩQtendingto+1.TherightplotinFig.9isatwo-dimensionalprojectionofthelatterandthusjustgivesanotherillustrationofthealreadydiscussedrelationbetweenwQandΩQfortheacceleratingcase,whereonlyacceleratingsolutionswithα<0.6,whichactuallyleadtowQ<−0.83atz=0,areexamined. 32Κ2 V1H200.5Α11.524Κ2VH22.52 23z101.510.5 1 2 2345 z Figure10:(Leftplot)κV(Q)H2(Q)withrespecttozforα=0,0.4,0.8and1.2(frombottomtotop,attherightendofthegraph). ThediscussionsofarhasbeenbasedontheideaofadarkenergyasdescribedbythescalarfieldQwithsomepotentialV(Q).Forobtainingtheanalyticalsolution,(3.37)-(3.39),noparticularchoicewasmadeforthepotential.Theonlyoneassumptionmadewasthatthefieldmightberollingwithaconstantvelocityα,withrespecttothee-foldingtimeN=lna.Thusitwouldbeworthlookingattheshapeofthepotentialasdeterminedbythisparticularsolution,followingtheideaofreconstructionunderlyingthefocusofthispaper.ForobtainingtheanalyticexpressionofV(Q),itisusefultoconsiderthesetofsubstitutionsmadein(3.15)-(3.16).Byutilisingtheadditionalconstraint(3.36),itiseasytoseethat κ2V(Q) .(3.45)Y≡ 2 Yisactuallyadimensionlessvariable,whichtakesthevalueY=3inapuredeSitterspace.ThevariationofYshowninFig.10seemsquitenaturalandcanbeunderstoodinthefollowingway.Inordertogetanacceleratedexpansionoftheuniverse,withwQcloseto−1atalowredshift,Y/3shouldexceedΩmintherecentpast. Inordertofindthepotential,itisnecessaryfirsttoevaluatetheHubbleparameterH,whichcanbeeasilydonebysolvingtheequation ǫ[N]H[N]=H′[N]. TheanalyticexpressionofHisgivenby −Nα2 H=c2exp c2= (3.46) 3exp[−λN]+c1λ, (3.47) Thenumericalconstantc2canbefixedbytheassumptionthatH[N=0]=H0.Hence H0 . 3+c1λ (3.48) –18– Finally,thequintessencepotentialtakestheform κ2V(Q(N))= 1 2H0 withrespecttozandα.(Rightplot) κ2V 2 e−α(c3+κQ)3α2exp α2−3c3+κQ mP 2α−3Q V0exp 2.521.5Κ2 V120.5H0 43ΚQ211.51Α0.521.51Κ2 V 0.5H02 0c30.511.5432ΚQ1with Figure12:(Leftplot)κV(Q)respecttoκQandc3,forα=0.6. 2 2H0 3.3CoupledQuintessence Asalreadymentionedabove,whensolvingthesystemofequations(3.31)-(3.34)withthe additionalconstraint(3.36)inthegeneralcase(αQ=0),onemoreconstraintisneededtogetananalyticsolution.ItismostcanonicaltoassumeκαQ≡const≡χ,whichrepresentsthecaseofso-calledexponentialcouplingbetweenthescalarfieldQandmatter,asA(Q)∝eχ(Q/mP).Thisadditionalassumptionthenleadstoageneralanalyticsolution ΩQ=1− ζ 3c4ζexp[ζN]+3α2−3χαǫ=− where α2 2c4ζexp[ζN]+6ζ≡3+χα−α2,α2 2c4ζexp[ζN]+6α2 2c4ζexp[ζN]+6 ., (3.53)(3.54) (3.55) Further,theanalyticexpressionsforqandweffaregivenby q=−1+ (3.56)(3.57) weff=−1+ Bysolvingthedifferentialequation(3.46),theHubbleparameterisfoundtobe −N(3+αχ) c4ζexp[ζN]+3,H(Q)=c5exp (3.58) whereN≡N(Q).Theintegrationconstantc5canbefixedbytheassumptionthat H[N=0]≡H0.Thisyields H0 .(3.59)c5= 3+c4ζ –20– OnethatN=0correspondstoa≡a0=1.Further,insistingthatnormalizesNsuch0 ΩmN=0,α,c4,χ≡Ωmatz=0fixestheintegrationconstantc4intermsofαandχ: c4= )+αχ−α23(1−Ω0m redshiftsforχ>0(χ<0).Thisbehaviorwouldbesomewhatoppositeinandeceleratinguniversewithα>αcrit.Thisbehaviourisexpectedbytheχ-dependenceofq,sinceanincreaseinmatterdensityalsoincreasesqandviceversa.Forabetterunderstandingofthissituation,itisusefultostudythebehaviourofthepotentialV(Q). ItisalsoworthexaminingthevaluesofdarkenergyEoSwQwithavaryingχ.Inthecaseχ<0,anincreasingnegativeχdecreaseswQ,whereasanincreasingpositiveχwillincreasewQwithrespecttothevalueithasintheminimalcouplingcase,χ=0;onemaycomparethefigure15with5. wQ 2 0.20.40.60.81 4 6 8 10 z wQ10.750.50.250.250.50.75 1 2 46 8 10z Figure15:ThedarkenergyEoSwQwithrespecttoz.Leftplot:χ=+0.1andα=0,0.2,0.4,1.0,1.4(bottomtotop).Rightplot:α=0.4andχ=−0.2,−0.1,0,0.1,0.2(toptobottom). Inanalogytotheprevioussection κ2V(Q) ×c4ζexp ζc6+κQ α 2),instead,Veff(Q) decreaseswithanincreasingz.Thisshouldnotcomeasasurprise;thisbehaviourhasitsorigininthevalueofαcritwhichisloweredforχ<0.Foragivenα,theslopeofthepotentialisshallowerforχ>0thanforχ<0,withvanishingdifferenceatlowerredshifts. Weconcludethissectionwiththefollowingtworemarks.Firstly,inourmodel,itispossiblethatthecurrentaccelerationoftheuniverseisonlytransient.Thiscaneasilyhap- pen,forαQ<0,wheniαQ(1−3wi)˜ρidQ(whereρi∝a−3−3wi)becomescomparableto(orexceeds)κ2V(Q),makingtheeffectivepotentialalmostvanishing(ornegative). Secondly,inthecaseboththeordinaryanddarkmatterhavesamecouplingwiththequintessencefieldQ,currentobservationalconstraints(fromCassiniexperimentsandthe –22– 400200Veff 1Α0.5012z3450200Veff10001Α0.50123z45Figure16:TheeffectivepotentialVeff(Q)withrespecttoredshiftzandtheslopeparameterα,intheunitsH0=1=κ,forχ=−0.5(leftplot)andχ=+0.5(rightplot).Wehavetakenc6=0. <10−4,whilethisboundissignificantlyrelaxedifdarkmatterlikes)onlydemandthatα2Q canhavemuchstrongercouplingwithQ.ItshouldbetheastrophysicalobservationsthatdecidewhetherαQ<0orαQ>0.Theanswertothisquestioncanhaveinterestingcosmologicaleffectswhichweaimtostudyinfuturework. 4.Confrontingmodelswithdata Inthissectionweconfrontourmodelswithrecentcosmologicaldatasets(SupernovaLegacySurvey(SNLS)andSNIaGold06datasets)followingthemethodsdiscussed,forexample,inrefs.[36,37]. Intheminimalcouplingcase,sinceρ˙Q+3H(1+wQ)ρQ=0(i.e.ρQandρmareseparatelyconserved),weget z (1+w(z1)) ρQ=ρQ0exp3 0 1− 3(1+ 2H0 z)dlnH Ωm0(1+z)3+(1−Ωm0)(1+z)α2, (4.4) whereΩm0≡3/(3+c1).UsingthisexpressionofH(z),weshowinFig.17thebestfit formofw(z)fortheSNLSdatawithapriorΩm0=0.24.ThedarkenergyequationofstatewQ(z)isgivenby wQ(z)= (1−Ωm0)(α2−3) Clearly,knowledgeofΩm0andαwouldsufficetodeterminewQ(z).Intheα=0case,wQ(z)=wΛ=−1.Intables1and2wepresentthebestfitvaluesofαandwQfordifferentchoicesofΩm0. wz00.511.5 0.20.40.60.81z Figure17:Thebestfitformofw(z)fortheSNLSdatasetsforapriorofΩm0=0.24alongwiththe1σerrors(shadedregion).The(black)solidlinecorrespondstotheansatzw(z1)≡w0+w1z1/(1+z1)(cfeq.(4.3)).Thethreeotherlinescorrespondtoα=0.4,0.2109,0(toptobottom)andwQ(z)givenbyeq.(4.5).WithΩm0=0.24,α=0.2109minimizestheχ2(=104.18).TheSNLSdatamin mayfavouralowervalueofΩm0(ascomparedtotheGoldSNIadataset).Further,withacanonicalquintessence,sothatwQ(z=0)−1,wemayrequireΩm0<0.2592. Table1:ThebestfitvaluesofwQ(z)and Ωm00.22 0.2573 0.24 0.1476 0.259173αfortheSNLSdatasetsforagivenΩm0.wQ(z=0)−0.9628 104.21 −0.9805 104.16 −0.9999 |α|0.4001 0.25 0.2544 0.29 0.0100 −0.9959−0.9493 χ2min178.64177.76177.25 –24– 1wz10.500.511.5z0.500.511.520.250.50.7511.251.50.250.50.7511.251.5Figure18:Thebestfitformofw(z)fortheGoldSNIadatasetforapriorofΩm0=0.27alongwiththe1σerrors(shadedregion)withH(z)givenbyeq.(4.7)(leftplot)andHobs(z)givenby(4.10)(rightplot);χ2isminimizedforα=0.4735andαQ0=0.0633.The(black)solidlinecorrespondstothebestfitlinewithχ2(≃177)andthethreeotherlinesrepresentwQ(z)(cfeq.(4.8))withmin α=0.6,0.4,0.2(toptobottom)andαQ≡χ=0.4. TheGoldSNIadatasetscouldactuallyfitbetterwithcoupledquintessence(orinteractingdarkenergy)models(cfFig.18). Inthenon-minimalcouplingcase,ρQisnotseparatelyconserved,sinceρ˙Q+3H(1+wQ)ρQ=αQHQ′ρm;ofcourse,thetotalenergyisalwaysconserved:ρ˙tot+3H(ρtot+ptot)=0,whereρtot=ρm+ρQ.Usingtherelations∂/∂t=H(∂/∂lna)andlna=−ln(1+z),weget ρQ=exp3 z0 (1+w(z1)) 1+z1 exp−3 z (1+w(z1)) 0 tobe H(z)=H0 d(κQ) ≡χ,theHubbleparameterH(z)isfound 3(1−Ωm0)(1+z)−ζ+α(α−χ)Ωm0 .(4.8) Nextwebrieflydiscussaboutaninterestingpossibility(leavingthedetailsandfurthergeneralizationtoaforthcomingpaper).Inthenon-minimalcouplingcase,theHubbleexpansionparameterthatonemeasures(inaphysicalJordanframe)couldactuallybedifferentthantheonegivenby(4.7)byaconformalfactor.Giventhat Hobs(z) wefind Hobs(z)=H0 α SNIa SNIa+WMAP+SDSS 0.06330.0583 wQ0(eq.(4.8)) .10 −0.94+0−0.10.07−0.92+0−0.08 ThemeanvalueofwQ0obtainedaboveiswithintherangeindicatedbyWMAP3+SDSS .087 observations:wDE=−0.941+0−0.101[3].ThebestfitvalueofαQisfoundtobeαQ≃0.06,butinourmodelitmaycontainsignificantnumericalerrors,namelyαQ=0.06±0.35,whichtherebyimpliestheconsistencyofourmodelwithgeneralrelativity(forwhichαQ=0)at1σlevel.ToillustratethisresultweshowinFig.19thebestfitplotwithαQ=0. wz10.500.511.520.250.50.7511.251.5zFigure19:AsinFig.18(rightplot)butwithαQ=0. Thepost-Newtonianparameterγ˜isrelatedtoαQ0(≡χ)throughtherelation[39] α2=Q 0 1−γ˜ GeffG50.980.960.940.92101520zFigure20:ThetimevariationofNewton’sconstantinthenon-minimalcase. conformallycoupledtothematter,theeffectiveNewton’sconstant(measured,e.g.,inaCavendishtypeexperiment)canbegivenby Geff |/Geff=0.029hH0≃ ˙/G2.1×10−12yr−1.WeshouldmentionthatthecurrentsolarsystemconstraintonGeffeff −13−1couldbemorestringentthanthis,namely(dGeff/dt)/Geff<10yr(see,e.g.ref.[40] ˙¨whichderivesconstraintsonG/GandG/GforamodelwhereQ-fieldisexplicitlycoupledto theEinstein-Hilbertterm);itisbecausetherelevantbackgroundwhenstudyingthesolarsystemisnotthecosmologicalbutthesolutionof(3.12)correspondingtothegalactic 2/8πG.Inordertoproperlyaddress˙environment,whereQ/H≈0andρgal≫ρcrit≡3H0 thequestionoftimederivative(orvariation)ofNewton’sconstant,onehastoconsiderindetailthedynamicalsystemwhereαQistime-varying.Thisisleftforfuturestudies. dt 5.Conclusion Inthispaperwehaveoutlinedconstructionofaneffectivecosmologicalmodeleachforinflationanddarkenergy(orquintessence),withintheframeworkofthestandardscalar-tensortheory.ThegeneralassumptionhasbeenthattheevolutionofouruniversecanbedescribedbyEinstein’sgravitycoupledtoafundamentalscalarfieldplusmatter,describedbythegeneralaction(3.1).Thegravitationalpartoftheaction,whichisimportantforconstructingamodelofinflation,containsascalarfieldlagrangian.ThematterpartoftheactioncontainsallpossiblematterconstituentsintheformofaperfectfluidplusacouplingtermA(Q)whichcharacterizesauniversalcouplingbetweenafundamentalscalarfieldQandordinary(plusdark)matter. –27– InSection2,wehavepresentedanexplicitmodelforinflation,byconstructinganin-flationarypotentialthat,withproperchoiceofslopeparameters,satisfiesthemainobser-vationalconstraintsfromWMAPdata,includingthespectralindexofscalarperturbationsandtensor-to-scalarratio. InSection3,wehavefirstderivedasetofautonomousequations,byutilizingafun-damentalvariationalprinciple,thatinacompactformdescribestheevolutionofdifferentcosmologicalparameters,namelyΩQ,wQ,Ωi,wi,ǫandαQ,asasystemoffourdifferentialequations,ofwhichonlythreearelinearlyindependent(cf(3.17)-(3.20)).Byfurthergeneralconsiderations,wehaveshownhowtheparametersqandweffcanbedeterminedfromasolutionoftheabovesystem.Asdiscussedinthebodyoftext,thesystemofequa-tions(3.17)-(3.20)couldbeanalyticallysolvedonlybymakingareductioninthenumberoffreeparametersorbyimposingadditionalconstraints.Inthiswork,oneofouraimswastokeepthemodelasgeneralaspossible,butforbeingabletofindanalyticsolutionsthenumberofparameterswasrestrictedtofour,neglectingtheradiationcomponent,andmakingareasonableadditionalassumptionthatQ≡αlna+constatthepresentepoch. Firstbyexaminingthecasewithminimalcoupling,A(Q)=1,aclassofexact(ana-lytical)solutionshasbeenfound(cfeqs.(3.37)-(3.42)),whichfindinterestingapplicationsforthepresent-daycosmology.Thegeneralsolutionfoundintheminimalcouplingcase ˙).Thusthehasthebehaviorthatitisindependentofthesignofα(i.e.thesignofQ directionofa“rolling”scalarfieldQdoesnotseemtohaveanysignificanteffect(whichalsodirectlyfollowedwhenlookingatthescalarfieldLagrangian(cfeq.(3.1)),exceptintheshapeofthepotential.Itisfoundthatthecriticalvalueαcrit=1.48separatestheparameterspacesofαsuchthatα<αcritallowsalatetimeaccelerationwhileα>αcritdoesnot.ThusthecharacteristicofthescalarfieldQactingasanadditionalself-repulsiveorself-attractiveformofenergyismerelydeterminedbythemagnitudeofthevelocityofthefield,d(κQ)/dlna≡α.Inseveralinterestingcaseswehavefoundaclosedformexpressionfor(reconstructed)quintessencepotentialV(Q). AsthecombinationofWAMPandtypeIasupernovaobservationsshowasignificant .087 constraintonthepresent-dayDEequationofstate,wQ=−0.941+0−0.101;forthemeanvalueωQ∼−0.941,werequire|α|∼0.4207 meansαandαQhavingthesamesign).For|αQ|0.1,andatlowredshifts,thepresent-dayvaluesofthecosmologicalparametersshowedalmostnoαQ-dependence.Thatis,anobservableeffectontheevolutionofcosmologicalparameters,suchasweffandΩQcanbeexpectedtobeseenonlyforastrongmatter-scalarcoupling,like|αQ|≫0.1.ThetypeIasupernovadatamayfavorasmallvalueformatter-quintessencecoupling,likeαQ∼0.06. Wehavealsoshownhowinprincipleanon-minimalmatter-scalarcouplingcanaltertheevolutionofthecosmologicalparameters.IngeneralthecouplingαQalwaysappearsincombinationwiththematterdensityρm(cfeq.(3.34)).AsthemassofthescalarfieldQ 1/2 canbedeterminedbyd2Veff/dQ2evaluatedatalocalminimumandthescalar-mattercouplinginVeff(Q)caninvolveaρm-dependentterm,themassofascalarfielddepends,inprinciple,ontheambientmatterdistribution.Thusinamoresophisticatedmodel,nottreatingmatterasanisotropicperfectfluid,themassofthescalarfieldcanvarylocallyduetoapossiblystronglocalvariationofρmonsmallscales. Acknowledgements TheresearchofIPNhasbeensupportedbytheFRSTResearchGrantNo.E5229andalsobyElizabethEllenDaltonResearchAward(No.5393). A.Appendix: Correspondingtotheaction(3.1),theequationsofmotionthatdescribegravity,thescalarfieldQandthebackgroundfields(matterandradiation)aregivenby 111 gµνR−(∇Q)2gµν+A4(Q)Tµν=0,(A.1)242 ∇µ(g µν ∇νQ)− dV(Q) dQ Theseequationsmaybesupplementedwiththeequationofmotionofabarotropicperfect fluid,whichisgivenby 4dAρi∂A +A3.(A.3)(˙aA)(a˙A)Combiningthe(tt)and(xx)componentsoftheequation(A.1),weget ˙=κ21˙2−V(Q)+A4−2Hρi+wiρi.Q 2 i i 1−3wiρi=0. (A.2) (A.4) DividingthisequationbyH2andthenusingthesubstitutionin(3.16),yields ˙κ2ρQ2H 1+wi.+wQ− H2H2˙andusingtheidentitiesMultiplyingeq.(3.11)withQ ˙Q¨+V˙,ρ˙Q=Q ˙2,ρQ(1+wQ)=Q (A.5) (A.6) –29– whichfollowfromeq.(3.16),weget ˙A3dA(Q)ρ˙Q+3HρQ1+wQ=Q andthenusingequations(3.21)and(3.15)-(3.16)leadsto 3H2 eq.(3.19).Further,multiplyingeq.(3.14)byκ 2 κ2ρdA(Q) i 3H2 + 3H2A(Q) Combiningthisequationwiththeidentity 1−3wi ρi. 2Ω′A4 i ≡κ(A.8) [11]S.Weinberg,Thecosmologicalconstantproblem,Rev.Mod.Phys.61,1(1989). [12]T.Padmanabhan,Cosmologicalconstant:Theweightofthevacuum,Phys.Rept.380,235 (2003)[arXiv:hep-th/0212290].[13]P.J.E.PeeblesandB.Ratra,Cosmologywithatimevariablecosmological‘constant’, Astrophys.J.325,L17(1988);C.Wetterich,CosmologyandtheFateofDilatation Symmetry,Nucl.Phys.B302,668(1988);I.Zlatev,L.M.WangandP.J.Steinhardt,Phys.Rev.Lett.82,896(1999).[14]J.E.Lidsey,A.R.Liddle,E.W.Kolb,E.J.Copeland,T.BarreiroandM.Abney, Reconstructingtheinflatonpotential:Anoverview,Rev.Mod.Phys.69,373(1997)[arXiv:astro-ph/9508078]. [15]J.Lesgourgues,A.A.StarobinskyandW.Valkenburg,WhatdoWMAPandSDSSreallytell aboutinflation?,arXiv:0710.1630[astro-ph]; M.Joy,V.SahniandA.A.Starobinsky,ANewUniversalLocalFeatureintheInflationaryPerturbationSpectrum,arXiv:0711.1585[astro-ph].[16]W.H.Kinney,E.W.Kolb,A.MelchiorriandA.Riotto,Inflationmodelconstraintsfromthe Wilkinsonmicrowaveanisotropyprobethree-yeardata,Phys.Rev.D74,023502(2006) [arXiv:astro-ph/0605338];H.PeirisandR.Easther,RecoveringtheInflationaryPotentialandPrimordialPowerSpectrumWithaSlowRollPrior:MethodologyandApplicationtoWMAP3YearData,JCAP0607,002(2006)[arXiv:astro-ph/0603587].[17]I.P.Neupane,Reconstructingamodelofquintessentialinflation,arXiv:0706.2654[hep-th].[18]I.P.Neupane,Oncompatibilityofstringeffectiveactionwithanacceleratinguniverse,Class. Quant.Grav.23,7493(2006)[arXiv:hep-th/0602097].[19]I.Antoniadis,J.RizosandK.Tamvakis,Singularity-freecosmologicalsolutionsofthe superstringeffectiveaction,Nucl.Phys.B415,497(1994)[arXiv:hep-th/9305025]; I.P.Neupane,Towardsinflationandacceleratingcosmologiesinstring-generatedgravitymodels,[arXiv:hep-th/0605265].[20]A.D.Linde,ParticlePhysicsandInflationaryCosmology,arXiv:hep-th/0503203.[21]E.D.StewartandD.H.Lyth,AMoreaccurateanalyticcalculationofthespectrumof cosmologicalperturbationsproducedduringinflation,Phys.Lett.B302,171(1993)[arXiv:gr-qc/9302019].[22]D.L.Wiltshire,Cosmicclocks,cosmicvarianceandcosmicaverages,NewJ.Phys.9,377 (2007)[arXiv:gr-qc/0702082].[23]T.DamourandA.M.Polyakov,TheStringDilatonAndALeastCouplingPrinciple,Nucl. Phys.B423,532(1994)[arXiv:hep-th/9401069].[24]L.Amendola,Coupledquintessence,Phys.Rev.D62,043511(2000) [arXiv:astro-ph/9908023]. [25]L.P.Chimento,A.S.Jakubi,D.PavonandW.Zimdahl,Interactingquintessencesolutionto thecoincidenceproblem,Phys.Rev.D67,083513(2003)[arXiv:astro-ph/0303145].[26]D.F.MotaandD.J.Shaw,Evadingequivalenceprincipleviolations,astrophysicaland cosmologicalconstraintsinscalarfieldtheorieswithastrongcouplingtomatter,Phys.Rev.D75,063501(2007)[arXiv:hep-ph/0608078].[27]B.M.LeithandI.P.Neupane,Gauss-Bonnetcosmologies:crossingthephantomdivideand thetransitionfrommatterdominancetodarkenergy,JCAP0705,019(2007)[arXiv:hep-th/0702002];I.P.Neupane,ConstraintsonGauss-BonnetCosmologies,arXiv:0711.3234[hep-th]. –31– [28]I.P.Neupane,ANoteonAgegraphicDarkEnergy,arXiv:0708.2910[hep-th];I.P.Neupane, RemarksonDynamicalDarkEnergyMeasuredbytheConformalAgeoftheUniverse,Phys.Rev.D76,123006(2007)[arXiv:0709.3096[hep-th]].[29]S.Lee,G.C.LiuandK.W.Ng,Constraintsonthecoupledquintessencefromcosmic microwavebackgroundanisotropyandmatterpowerspectrum,Phys.Rev.D73,083516(2006)[arXiv:astro-ph/0601333];Z.K.Guo,N.OhtaandS.Tsujikawa,Phys.Rev.D76,023508(2007)[arXiv:astro-ph/0702015].[30]V.SahniandA.Starobinsky,Reconstructingdarkenergy,Int.J.Mod.Phys.D15,2105 (2006)[arXiv:astro-ph/0610026].[31]S.NojiriandS.D.Odintsov,Unifyingphatominflationwithlate-timeacceleration:Scalar phatom-non-phantomtransitionmodelandgeneralisedholographicdarkenergy,Gen.Rel.Grav.38,1285(2006)[arxiv:hep-th/0506212].[32]H.K.Jassal,J.S.BaglaandT.Padmanabhan,WMAPconstraintsonlowredshiftevolution ofdarkenergy,Mon.Not.Roy.Astron.Soc.356,L11(2005)[arXiv:astro-ph/0404378].[33]D.HutererandH.V.Peiris,Dynamicalbehaviorofgenericquitessencepotentials: Constraintsonkeydarkenergyobservables,Phys.Rev.D75,083503(2007)[arXiv:astro-ph/0610427].[34]T.Barreiro,E.J.CopelandandN.J.Nunes,Quintessencearisingfromexponential potentials,Phys.Rev.D61,127301(2000).[35]I.P.Neupane,Acceleratingcosmologiesfromexponentialpotentials,Class.Quant.Grav.21, 4383(2004)[arXiv:hep-th/0311071];CosmicaccelerationandMtheorycosmology,Mod.Phys.Lett.A19,1093(2004)[arXiv:hep-th/0402021].[36]S.NesserisandL.Perivolaropoulos,CrossingthePhantomDivide:TheoreticalImplications andObservationsalStatus,JCAP0701,018(2007)[arXiv:astro-ph/0610092]; ibid,TensionandSytematicsintheGold06SnIaDataset,JCAP0702,025(2007)[arXiv:astro-ph/0612653].[37]U.Alam,V.SahniandA.A.Starobinsky,ExploringthePropertiesofDarkEnergyUsing TypeIaSupernovaeandOtherDatasets,JCAP0702,011(2007)[arXiv:astroph/0612381].[38]T.D.Saini,S.Raychaudhury,V.SahniandA.A.Starobinsky,Reconstructingthecosmic equationofstatefromsupernovadistances,Phys.Rev.Lett.85,1162(2000)[arXiv:astro-ph/9910231].[39]T.DamourandG.Esposito-Farese,Nonperturbativestrongfieldeffectsintensor-scalar theoriesofgravitation,Phys.Rev.Lett.70,2220(1993).[40]S.NesserisandL.Perivolaropoulos,Thelimitsofextendedquintessence,Phys.Rev.D75 023517(2007)[astro-ph/0611238]. –32– 因篇幅问题不能全部显示,请点此查看更多更全内容