各反三角函数和三角函数关系计算公式
Secant(正割) Sec(X) = 1 / Cos(X)
Cosecant(余割) Cosec(X) = 1 / Sin(X)
Cotangent(余切) Cotan(X) = 1 / Tan(X)
Inverse Sine(反正弦) Arcsin(X) = Atn(X / Sqr(-X * X + 1))
Inverse Secant(反正割) Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) - 1) * (2 * Atn(1))
Inverse Cosecant(反余割) Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))
Inverse Cotangent(反余切) Arccotan(X) = Atn(X) + 2 * Atn(1)
Hyperbolic Sine(双曲正弦) HSin(X) = (Exp(X) - Exp(-X)) / 2
Hyperbolic Cosine(双曲余弦) HCos(X) = (Exp(X) + Exp(-X)) / 2
Hyperbolic Tangent(双曲正切) HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))
Hyperbolic Secant(双曲正割) HSec(X) = 2 / (Exp(X) + Exp(-X))
Hyperbolic Cosecant(双曲余割) HCosec(X) = 2 / (Exp(X) - Exp(-X))
Hyperbolic Cotangent(双曲余切) HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))
Inverse Hyperbolic Sine(反双曲正弦) HArcsin(X) = Log(X + Sqr(X * X + 1))
Inverse Hyperbolic Cosine(反双曲余弦) HArccos(X) = Log(X + Sqr(X * X - 1))
Inverse Hyperbolic Tangent(反双曲正切) HArctan(X) = Log((1 + X) / (1 - X)) / 2
Inverse Hyperbolic Secant(反双曲正割) HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)
Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)
Inverse Hyperbolic Cotangent(反双曲余切) HArccotan(X) = Log((X + 1) / (X - 1)) / 2
以 N 为底的对数 LogN(X) = Log(X) / Log(N)
三角函数基本公式
Sin a=y/r cos a=x/y yg a=y/x ctg a=x/y sec a=r/x csc a=r/y
Sin(k.360+a)=sin a cos(k.360+a)=cos a tg(k.360+a)=tg a
ctg(k.360+a)=ctg a Sin a*csc a=1 cos a*sec a=1
tg a*ctg a=1 Tg a=sin a/cos a ctg a=cos a/sin a
Sin^2 a+cos^2 a=1 1+tg^2 a=sec^2 a 1=ctg^2 a=csc^2 a
Sin(180+a)= -sin a cos(180+a)=-cos a tg(180+a)=tg a
ctg(180 +a)=ctg a Sin(-a)=-sin a cos(-a)=cos a
tg(-a)=-tg a cos(180-a)=-cos a Sin(360-a)=-sin a ctg(360-a)=-ctga
ctg(-a)=-ctg a tg(180-a)=-tg a cos(360-a)=-cos a Sin(180-a)=sin a
ctg(180-a)=-ctg a
tg(380-a)=-tg a
因篇幅问题不能全部显示,请点此查看更多更全内容